Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

In order to have a bijection between $C \rightarrow(A \times A)$ and $C \rightarrow(A \times B)$ we have to find a bijective function $g \in(A \rightarrow B)$ needed to transform the second value a_{2} of the pair $\left(a_{1}, a_{2}\right) \in(A \times A)$ into a $b \in B$ - having so a pair $\left(a_{3}, b\right) \in(A \times B)$ - and vice versa - i.e. $g^{-1}(b)=a_{2}$-. This function g can just be f because it's a bijection between A and B. Having a bijection between A and A itself it's trivial, and for C there are no problems, so at this point we can surely affirm that $\forall C .(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

2 Question

1. Does a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. It cannot exist a such function because the set of all the functions $\mathbb{N} \rightarrow$ $\{0,1,2,3\}$ has a cardinality greater than the set of naturals \mathbb{N}, so it is not possible to cover all the (infinite) functions with the (infinite) natural numbers since the it's an infinite of a greater order than \mathbb{N}. In order to do a such thing it should be possible to have $f(x)$ that returns more than one result.
2. It exists; for instance we can take $f(\{x\})=x$ which take only all the partitions containing only one element, mapping that set $\{x\}$ into x. We can do this work because f is partial.
3. It cannot exist because, first of all, having f total we have to map every input - i.e. every $x \in \mathcal{P}(\mathbb{N})$ - , and moreover the cardinality of $\mathcal{P}(\mathbb{N})$ is greater than the \mathbb{N} 's one, and finally the injectivity obliges us to map for each different x a different $f(x)$. This means that we haven't got sufficient (infinite) values in \mathbb{N} to map all the ("more" infinite) partitions in $\mathcal{P}(\mathbb{N})$.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

Since g is partial, it is not defined for all the values of B, so $\operatorname{dom}(g) \subset B$. At this point we can take $g=f^{-1}$ to easily reach the goal. Note that $g=$ $f^{-1} \Longrightarrow \operatorname{ran}(f)=\operatorname{dom}(g) \subset B$. So $\forall b \in \operatorname{dom}(g) . f(g(b))=f\left(f^{-1}(b)\right)=b$, while $\forall b^{\prime} \notin \operatorname{dom}(g) . f\left(f^{-1}\left(b^{\prime}\right)\right)$ is not defined.

