Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

let $g \in((C \rightarrow(A \times A)) \rightarrow(C \rightarrow(A \times B))), g\left(\left\langle c,\left\langle a, a^{\prime}\right\rangle\right\rangle\right)=\left\langle c,\left\langle a, f\left(a^{\prime}\right)\right\rangle\right\rangle$ and let $h \in((C \rightarrow(A \times B)) \rightarrow(C \rightarrow(A \times A))), h(\langle c,\langle a, b\rangle\rangle)=\left\langle c,\left\langle a, f^{-1}(b)\right\rangle\right\rangle$.

Note that $h \circ g\left(\left\langle c,\left\langle a, a^{\prime}\right\rangle\right\rangle\right)=h\left(\left\langle c,\left\langle a, f\left(a^{\prime}\right)\right\rangle\right\rangle\right)=\left\langle c,\left\langle a, f^{-1}\left(f\left(a^{\prime}\right)\right)\right\rangle\right\rangle=\left\langle c,\left\langle a, a^{\prime}\right\rangle\right\rangle$, thus $h \circ g=i d$;
dually, $g \circ h(\langle c,\langle a, b\rangle\rangle)=g\left(\left\langle c,\left\langle a, f^{-1}(b)\right\rangle\right\rangle\right)=\left\langle c,\left\langle a, f\left(f^{-1}(b)\right)\right\rangle\right\rangle=\langle c,\langle a, b\rangle\rangle$, thus $g \circ h=i d$.

Thus g is invertible (and its inverse is h), thus g is a bijection.

2 Question

1. Doeas a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. No. Suppose such f exists and let $g(n)=(f(n)(n)+1) \bmod 4$ (where \bmod is the reminder of the integer division). Clearly, $g \in(\mathbb{N} \rightarrow\{0,1,2,3\})$; because f is surjective, $\exists m \in \mathbb{N}$. $g=f(m)$; this means that, for some m, $\forall x \in \mathbb{N} . f(m)(x)=g(x)$, thus $f(m)(m)=g(m)=(f(m)(m)+1) \bmod 4 \neq$ $f(m)(m)$, which is a contraddiction.
2. Yes: consider $f(\{x\})=x$ with $x \in \mathbb{N} ; f(\emptyset)$ undefined; $f(A)$ undefined if $|A|>$ 1. This is clearly a partial function from $\mathcal{P}(\mathbb{N})$ to \mathbb{N} and it is injective (no two distinct elements of the domain are mapped to the same element).
3. No. Suppose such f exists and let $A=\operatorname{ran}(f)$; then $A \subseteq \mathbb{N}$ and note $f^{\prime} \in\left(\mathcal{P}(\mathbb{N}) \rightarrow A\right.$) is bijective; then consider its inverse $f^{\prime-1}$ (which does exist) and note $\operatorname{ran}\left(f^{\prime-1}\right)=\mathcal{P}(\mathbb{N})$. Note that A can not be finite, because otherways $\operatorname{ran}\left(f^{\prime-1}\right)=f^{\prime-1}(A)$ would be finite as well; however, because $A \subseteq \mathbb{N}$, and A not finite, A is an enumerable set i.e. $A \leftrightarrow \mathbb{N}$. So we found $\mathcal{P}(\mathbb{N}) \leftrightarrow A \leftrightarrow \mathbb{N}$, thus $\mathcal{P}(\mathbb{N}) \leftrightarrow \mathbb{N}$, which contraddicts Cantor's theorem.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

Let $C=\operatorname{ran}(f)=\{b \in B \mid \exists a \in A . f(a)=b\}$. Note that $C \neq \emptyset$ because f is defined on every element of the nonempty A (so it is defined on at least one number). Note that, by definition of $C, \forall c \in C . \exists a \in A . f(a)=c$, thus define $g \in(C \rightarrow A)$ as a function that coherently returns one such element a of A that satisfies $f(a)=c$ where c is its input. Thus $g \in(B \rightsquigarrow A), \operatorname{dom}(g)=C \neq \emptyset$, and the last requirement is also satified by construction.

