Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

Please do not submit a file containing only the answers; edit this
file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

- 1. $A = f^{-1}(f(A))$
- 2. $B \supseteq f(f^{-1}(B))$
- 3. No because it can be f(C) = f(A).
- 4. True.

2 Question

Let A, B be sets, and let $\mathsf{id}_A, \mathsf{id}_B$ denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = \mathsf{id}_A$ and $f \circ g = \mathsf{id}_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

Write your answer here.

3 Question

(This question is more challenging.) Find two functions $f,g\in(\mathbb{N}\to\mathbb{N})$ that satisfy all the following conditions:

- 1. $\operatorname{ran}(f) \neq \mathbb{N} \text{ and } \operatorname{ran}(g) \neq \mathbb{N};$
- 2. ran(f) and ran(g) are infinite sets;
- 3. $ran(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- $4. \ \exists n \in \mathbb{N}. \ \mathsf{ran}(g \circ f) = \{n\}.$

3.1 Answer

Write your answer here.