Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

- 1. f(A) is the set $f(A) = \{f(x)|x \in A\}$. Applying f^{-1} we get $f^{-1}(\{f(x)|x \in A\}) = \{x|x \in X \land f(x) \in \{f(x)|x \in A\}\}$. It is the set of elements starting from X that goes only into images of element of A. Having no information about f, e.g its injectivity, we can only conclude that $A \subseteq f^{-1}(f(A))$.
- 2. $f^{-1}(B) = \{x | x \in X \land f(x) \in B\}$ applying f() we get $f(f^{-1}(B)) = \{f(x) | x \in \{z | z \in X \land f(z) \in B\}\} = \{f(x) | x \in X \land f(x) \in B\}\}$. Taking X as the domain of f, there could be elements inside B that are not image of f so we can only conclude that $B \supseteq f(f^{-1}(B))$.
- 3. $f(C) = \{f(x) | x \in C\}$ and $f(A) = \{f(x) | x \in A\}$. We have no information about the behaviour of f, e.g. its injectivity but, if it is not injective,

there could be the case that f(C) = f(A) so it not always true that $f(C) \subset f(A)$.

4. It is not always true. We take $f^{-1}(C) = \{x | x \in X \land f(x) \in C\}$ and $f^{-1}(B) = \{x | x \in X \land f(x) \in B\}$. As 3) we have no information about f, e.g. its surjectivity, so there could be the case that all the elements of X applied to f brings to C. This would be the case that all the hypothesis hold and $f^{-1}(C) = f^{-1}(A)$.

2 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

We know that f and g are functions, so $\forall x.x \in A, \exists f(x) \land f(x) \in B$ and $\forall y.y \in B, \exists g(y) \land g(y) \in A$.

Knowing that $g \circ f = id_A$, means that f is injective as it is never the case that it maps multiple element of A into the same element of B, otherwise it would not be possible to construct the function id_A . Knowing also that $f \circ g = id_B$ means that it is surjective as it has to map and cover all the elements of B, otherwise it would not be possible to construct the function id_B . So we can say that f is a bijection.

3 Question

(This question is more challenging.) Find two functions $f, g \in (\mathbb{N} \to \mathbb{N})$ that satisfy all the following conditions:

- 1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;
- 3. $\operatorname{ran}(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}$. $\operatorname{ran}(g \circ f) = \{n\}$.

3.1 Answer

$$f(x) = \begin{cases} id & if \ x \ even \\ 0 & if \ x \ odd \end{cases} \text{ and } g(x) = \begin{cases} 0 & if \ x \ even \\ id & if \ x \ odd \end{cases}$$

They have both infinite range that not covers all \mathbb{N} . Summed with the same input they return id+0 or 0+id, so they behave like the identity and composed they always return a costant equal to zero;