Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. $f(A)$ is the set $f(A)=\{f(x) \mid x \in A\}$. Applying f^{-1} we get $f^{-1}(\{f(x) \mid x \in$ $A\})=\{x \mid x \in X \wedge f(x) \in\{f(x) \mid x \in A\}\}$. It is the set of elements starting from X that goes only into images of element of A. Having no information about f, e.g its injectivity, we can only conclude that $A \subseteq f^{-1}(f(A))$.
2. $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\}$ applying $f()$ we get $f\left(f^{-1}(B)\right)=$ $\{f(x) \mid x \in\{z \mid z \in X \wedge f(z) \in B\}\}=\{f(x) \mid x \in X \wedge f(x) \in B\}\}$. Taking X as the domain of f, there could be elements inside B that are not image of f so we can only conclude that $B \supseteq f\left(f^{-1}(B)\right)$.
3. $f(C)=\{f(x) \mid x \in C\}$ and $f(A)=\{f(x) \mid x \in A\}$. We have no information about the behaviour of f, e.g. its injectivity but, if it is not injective,
there could be the case that $f(C)=f(A)$ so it not always true that $f(C) \subset f(A)$.
4. It is not always true. We take $f^{-1}(C)=\{x \mid x \in X \wedge f(x) \in C\}$ and $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\}$. As 3) we have no information about f , e.g. its surjectivity, so there could be the case that all the elements of X applied to f brings to C. This would be the case that all the hypothesis hold and $f^{-1}(C)=f^{-1}(A)$.

2 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\mathrm{id}_{A}$ and $f \circ g=\mathrm{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

We know that f and g are functions, so $\forall x . x \in A, \exists f(x) \wedge f(x) \in B$ and $\forall y . y \in B, \exists g(y) \wedge g(y) \in A$.

Knowing that $g \circ f=\mathrm{id}_{A}$, means that f is injective as it is never the case that it maps multiple element of A into the same element of B, otherwise it would not be possible to construct the function $i d_{A}$. Knowing also that $f \circ g=\mathrm{id}_{B}$ means that it is surjective as it has to map and cover all the elements of B, otherwise it would not be possible to construct the function $i d_{B}$. So we can say that f is a bijection.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

$f(x)=\left\{\begin{array}{ll}\text { id } & \text { if } x \text { even } \\ 0 & \text { if } x \text { odd }\end{array}\right.$ and $g(x)= \begin{cases}0 & \text { if } x \text { even } \\ \text { id } & \text { if } x \text { odd }\end{cases}$
They have both infinite range that not covers all \mathbb{N}. Summed with the same input they return $\mathrm{id}+0$ or $0+\mathrm{id}$, so they behave like the identity and composed they always return a costant equal to zero;

