Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

Please do not submit a file containing only the answers; edit this
file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x)|x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x|x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

Write your answer here.

2 Question

Let A, B be sets, and let $\mathsf{id}_A, \mathsf{id}_B$ denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = \mathsf{id}_A$ and $f \circ g = \mathsf{id}_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

Write your answer here.

3 Question

(This question is more challenging.) Find two functions $f,g\in(\mathbb{N}\to\mathbb{N})$ that satisfy all the following conditions:

- 1. $ran(f) \neq \mathbb{N}$ and $ran(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;
- 3. $ran(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}$. $ran(g \circ f) = \{n\}$.

3.1 Answer

I claim that if we choose the two functions f as

$$f(n) = \begin{cases} n & if \ n \ is \ even \\ 0 & o.w. \end{cases}$$

and g as

$$g(n) = \begin{cases} n & if \ n \ is \ odd \\ 0 & o.w. \end{cases}$$

Points 1 and 2 can be easily check.

Point 3 is satisfied because we have that if n is even then the we get h(n) = n + 0 = n, while if it is odd we get h(n) = 0 + n = n. Therefore $ran(h) = \mathbb{N}$. Point 4 is satisfied because f(n) is returning either an even number or 0. On both these inputs the function g returns 0 and therefore the condition is satisfied.