Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

- 1. =
- 2. =
- 3. No (since f might not be injective, thus the elements belonging only to A could have the same images of the elements of C, proper subset of A, for example it could send all inputs in 1).
- 4. No (since f might not be surjective, and while the pre-image of B contains all the elements in the pre-image of C, because their images, the elements of C, are a proper subset of B, it might be that the elements of B that are not in C are not actually the image of any element of X, therefore the pre-image of B and C might be identical).

2 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

Suppose that f is not injective. Then $\exists a_1, a_2 \in A.f(a_1) = f(a_2) = b, b \in B$. But, since $g \circ f = id_A$, $a_1 = g(f(a_1)) = g(b) = g(f(a_2))$, contradiction. Thus, f is injective. Then, suppose that f is not surjective. Then $\exists b \in B. \forall a \in A.f(a) \neq b$. But, since $f \circ g = id_B$, $\forall b \in B.b = f(g(b)) = f(a)$ with $a \in A$, contradiction. Therefore f is surjective, and, being also injective, a bijection. \Box

3 Question

(This question is more challenging.) Find two functions $f, g \in (\mathbb{N} \to \mathbb{N})$ that satisfy all the following conditions:

- 1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;
- 3. $\operatorname{ran}(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}$. $\operatorname{ran}(g \circ f) = \{n\}$.

3.1 Answer

$$g(x) = \begin{cases} 0 & x = 2n, n \in \mathbb{N} \\ x & o.w. \end{cases}$$
$$f(x) = \begin{cases} 0 & x = 2n + 1, n \in \mathbb{N} \\ x & o.w. \end{cases}$$