Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. $f^{-1}(f(A))=f^{-1}(\{f(x) \mid x \in A\})=\{x \mid x \in X \wedge f(x) \in\{f(x) \mid x \in A\}\}=$ $\{x \mid x \in X \wedge x \in A\}=A ;$
2. $f\left(f^{-1}(B)\right)=f(\{x \mid x \in X \wedge f(x) \in B\})=f(\{x \mid x \in X \wedge f(x) \in\{f(x) \mid x \in$ $A\}\})=f(\{x \mid x \in X \wedge f(x) \in\{f(x) \mid x \in\{x \mid x \in X \wedge f(x) \in B\}\}\})=$ $\{f(x) \mid x \in X \wedge\{f(x) \mid x \in\{x \mid x \in X \wedge f(x) \in B\}\}\}=\{f(x) \mid x \in X \wedge$ $\{f(x) \mid x \in X \wedge f(x) \in B\}=\{f(x) x \in X \wedge\{f(x) \mid x \in X \wedge x \in B\}\}=$ $\{f(x) \mid x \in X \wedge x \in B\}=\{x \mid x \in X \wedge x \in B\}=\{x \mid x \in B\}=B ;$
3. Yes, because $f(C)=\{f(x) \mid x \in C\}, f(A)=\{f(x) \mid x \in A\}$ and since $C \subset A$ then $f(C) \subset f(A)$;
4. Yes, because $f^{-1}(C)=\{x \mid x \in X \wedge f(x) \in C\}, f^{-1}(B)=\{x \mid x \in X \wedge$ $f(x) \in B\}$ and since $C \subset B$ then $f^{-1}(C) \subset f^{-1}(B)$.

2 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \operatorname{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

- injective: take $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$ and we want to show that $a_{1}=a_{2}$. By definition we have that $a_{1}=i d_{A}\left(a_{1}\right)=g \circ f\left(a_{1}\right)=$ $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=g \circ f\left(a_{2}\right)=i d_{A}\left(a_{2}\right)=a_{2}$. Then we can say that f is injective;
- surjective: take $b_{1} \in B$ and we want to show that $\exists a_{1} \in A . f\left(a_{1}\right)=b_{1}$. By definition $b_{1}=i d_{B}\left(b_{1}\right)=f \circ g\left(b_{1}\right)=f\left(g\left(b_{1}\right)\right)$. But $g \in(B \longrightarrow A)$ and this means that $\forall b \in B . \exists!a \in A . g(b)=a$. We call $a_{1}=g\left(b_{1}\right)$ and than we can say that f is surjective;
- Since f is injective and surjective by definition we can say f is bijective.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

We define:
$f(n)=\left\{\begin{array}{c}n \text { if } n \text { is even } \\ 0 \text { if } n \text { is odd }\end{array} \quad ; g(n)=\left\{\begin{array}{c}n \text { if } n \text { is odd } \\ 0 \text { if } n \text { is even }\end{array}\right.\right.$
Now we check whether the two functions satisfy the above conditions:

1. By definition $\operatorname{ran}(f)=\{n \in \mathbb{N} \mid n$ is even $\} \neq \mathbb{N}$ e $\operatorname{ran}(g)=\{0\} \cup\{n \in$ $\mathbb{N} \mid n$ is odd $\} \neq \mathbb{N}$.
2. It is a consequence of point 1 .
3. If n is even allora $h(n)=n+0=n$ and if n is odd $h(n)=0+n=n$. This means that $h=i d_{\mathbb{N}}$ which implies that $\operatorname{ran}(h)=\mathbb{N}$.
4. $g \circ f(n)=g(f(n))$. If we find that $\forall n \in \mathbb{N} . g \circ f(n)=0$ than $\operatorname{ran}(g \circ f)=$ $\{0\}$. We prove:

- if n is even $g(f(n))=g(n)=0$;
- if n is odd $g(f(n))=g(0)=0$.

