Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. It depends on f :
(a) if f is an injective function $\mathrm{A}=f^{-1}(f(A))$
(b) otherwise $\mathrm{A} \supseteq f^{-1}(f(A))$
2. It depends on f :
(a) if f is a surjective function $\mathrm{B}=f^{-1}(f(B))$
(b) otherwise $\mathrm{B} \supseteq f^{-1}(f(B))$
3. No, because if $f(A \backslash C)=\emptyset$ then $f(A)=f(C)$
4. No, because if $f^{-1}(B \backslash C)=\emptyset$ then $f^{-1}(B)=f^{-1}(C)$

2 Question

Let A, B be sets, and let $\operatorname{id}_{A}, \operatorname{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

1. Proof of injectivity of f.

We assume that: $\forall x \in A . x=g(f(x))$
Suppose that $\exists x y \cdot f(x)=f(y) \wedge x \neq y$
then $x=g(f(x))=g(f(y))=y$ because $f(x)=f(y)$ and the function g with the same argument returns the same value: $x=y$.
But we suppose that $x \neq y$. Contradiction.
Therefore $\neg \exists x y \cdot f(x)=f(y) \wedge x \neq y$
$\forall x y . \neg((f(x)=f(y)) \wedge \neg(x=y))$
$\forall x y .(\neg(f(x)=f(y)) \vee(x=y))$
$\forall x y .(f(x)=f(y)) \Rightarrow(x=y)$
So, to compose the functions g and f in order to have I_{A} it is necessary the injectivity of f.
2. Proof of surjectivity of f .
$f \circ g=I_{B} \Rightarrow \forall y \in B . \exists x \in A .(x=g(y) \wedge f(x)=y)$
A function f is surjective if $\forall y \in B . \exists x \in A . f(x)=y$
We prove by contradiction that if f in not surjective
$\neg \forall y \in B . \exists x \in A . f(x)=y$
$\exists y \in B . \forall x \in A . \neg(f(x)=y)$
$\exists y \in B . \forall x \in A . \neg f(g(y))=y$
But $f \circ g=I_{B} \Leftrightarrow \forall y \in B . \exists x \in A .(x=g(y) \wedge f(x)=y)$. Contradiction.
3. If f is injective and surjective, as proved, f is bijective.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

$f(x)=\left\{\begin{array}{ll}x & \exists n \in \mathbb{N} .2 n=x \\ 0 & \text { o.w. }\end{array} g(x)= \begin{cases}x & \exists n \in \mathbb{N} .2 n+1=x \\ 0 & \text { o.w. }\end{cases}\right.$

1. $\operatorname{ran}(f)$ is all the even natural numbers and $\operatorname{ran}(g)$ is all the odd natural numbers, but their ran is different from \mathbb{N}
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are both infinite
3. $\operatorname{ran}(h)=\mathbb{N}$ beacause is the union of all even and odd natural numbers
4. The number n is 0
