Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

- 1. It depends on f:
 - (a) if f is an injective function $A = f^{-1}(f(A))$
 - (b) otherwise $A \supseteq f^{-1}(f(A))$
- 2. It depends on f:
 - (a) if f is a surjective function $B = f^{-1}(f(B))$
 - (b) otherwise $B \supseteq f^{-1}(f(B))$
- 3. No, because if $f(A \setminus C) = \emptyset$ then f(A) = f(C)
- 4. No, because if $f^{-1}(B \setminus C) = \emptyset$ then $f^{-1}(B) = f^{-1}(C)$

2 Question

Let A, B be sets, and let $\mathsf{id}_A, \mathsf{id}_B$ denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = \mathsf{id}_A$ and $f \circ g = \mathsf{id}_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

- Proof of injectivity of f. We assume that: ∀x ∈ A.x = g(f(x)) Suppose that ∃xy.f(x) = f(y) ∧ x ≠ y then x = g(f(x)) = g(f(y)) = y because f(x) = f(y) and the function g with the same argument returns the same value: x = y. But we suppose that x ≠ y. Contradiction. Therefore ¬∃xy.f(x) = f(y) ∧ x ≠ y ∀xy.¬((f(x) = f(y)) ∧ ¬(x = y)) ∀xy. (¬(f(x) = f(y)) ∨ (x = y)) ∀xy. (f(x) = f(y)) ⇒ (x = y) So, to compose the functions g and f in order to have I_A it is necessary the injectivity of f.
- 2. Proof of surjectivity of f.
 - $$\begin{split} &f \circ g = I_B \Rightarrow \forall y \in B. \exists x \in A. (x = g(y) \land f(x) = y) \\ &\text{A function } f \text{ is surjective if } \forall y \in B. \exists x \in A. f(x) = y \\ &\text{We prove by contradiction that if } f \text{ in not surjective} \\ &\neg \forall y \in B. \exists x \in A. f(x) = y \\ &\exists y \in B. \forall x \in A. \neg (f(x) = y) \\ &\exists y \in B. \forall x \in A. \neg f(g(y)) = y \\ &\text{But } f \circ g = I_B \Leftrightarrow \forall y \in B. \exists x \in A. (x = g(y) \land f(x) = y). \\ &\text{Contradiction.} \end{split}$$
- 3. If f is injective and surjective, as proved, f is bijective.

3 Question

(This question is more challenging.) Find two functions $f, g \in (\mathbb{N} \to \mathbb{N})$ that satisfy all the following conditions:

- 1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;
- 3. $\operatorname{ran}(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}$. $\operatorname{ran}(g \circ f) = \{n\}$.

3.1 Answer

$$f(x) = \begin{cases} x & \exists n \in \mathbb{N}. 2n = x \\ 0 & o.w. \end{cases} g(x) = \begin{cases} x & \exists n \in \mathbb{N}. 2n + 1 = x \\ 0 & o.w. \end{cases}$$

- 1. ran(f) is all the even natural numbers and ran(g) is all the odd natural numbers, but their ran is different from \mathbb{N}
- 2. ran(f) and ran(g) are both infinite
- 3. $\mathsf{ran}(h) = \mathbb{N}$ be acause is the union of all even and odd natural numbers
- 4. The number **n** is 0