Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. We know that $\forall x \in A . f(x) \in Y$. Applying to this $y=f(x)$ the function f^{-1}, we can have two different cases:
(a) $y \in Y \backslash B \quad \Longrightarrow \quad f^{-1}(f(x))$ is not defined because $f(x) \notin B$;
(b) $y \in B \quad \Longrightarrow \quad f^{-1}(f(x)) \in X$, which means that $\left.z=f^{-1} f(x)\right)$ can belongs either to $X \backslash A$ or A. So we can say that $A \subseteq f^{-1}(f(A))$ because it's possible that $\exists x \in A . f^{-1}(f(x)) \in X \backslash A$ (or, in other words, it's not sure that $\left.\forall x \in A . f^{-1}(f(x)) \in A\right)$.
2. Following the same reasoning in (1.b), $B \subseteq f\left(f^{-1}(B)\right)$ because there is the possibility that $\exists y \in B . f\left(f^{-1}(x)\right) \in Y \backslash B$.
3. No because we haven't any information about the injectivity or surjectivity of f. So we have the following cases:
(a) $f(C) \subseteq f(A) \subseteq Y \backslash B \subset Y \quad \Longrightarrow \quad f(C) \not \subset f(A)$
(b) $f(C) \subseteq f(A) \subseteq B \subset Y \quad \Longrightarrow \quad f(C) \not \subset f(A)$
(c) $f(C) \subset f(A) \subset B$
4. Again, not necessarily because we have no information about the injectivity of f^{-1}, so we could have the case where $f^{-1}(C)=f^{-1}(B)$.

2 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

Let's prove the injectivity (1.) and surjectivity (2.) of f.

1. The function f is injective because of this reasoning. $\forall x, y \in A . f(x) \neq$ $f(y) \Longrightarrow x \neq y$. Being $\mathrm{id}_{A}=g(f(x)), \mathrm{id}_{\mathrm{B}}=g(f(y))$ and $f(x) \neq f(y)$, then $g(f(x)) \neq g(f(y)) \quad \Longrightarrow \quad \operatorname{id}_{A}(x) \neq \operatorname{id}_{B}(y) \quad \Longrightarrow \quad x \neq y$.
2. The function f is also surjective because it's just necessary to apply g after f to go back the same domain's value, since $g \circ f=\mathrm{id}_{A}$. So $\forall y \in$ B. $\exists x \in A \mid g(y)=f^{-1}(y)=x$.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

