Year 2013/14 - Number 3

October 3, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(a)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset$ $f^{-1}(B)$?

Answer 1.1.

1. By definition of $f^{-1}(B)$, it follows that $f^{-1}(f(A))=\{x \mid x \in X \wedge f(x) \in$ $f(A)\}$. The condition $f(x) \in f(A)$ is true iff $x \in A$ (by definition of $f(A))$. That's mean that $f^{-1}(f(A))=\{x \mid x \in X \wedge x \in A\}=\{x \mid x \in$ $A\}=A$.
2. By definition of $f(A)$, it follows that $f\left(f^{-1}(B)\right)=\left\{f(x) \mid x \in f^{-1}(B)\right\}$. The condition $x \in f^{-1}(B)$ is true iff $x \in X \wedge f(x) \in B$ (by definition of $f^{-1}(B)$). That's mean that $f\left(f^{-1}(B)\right)=\{f(x) \mid x \in X \wedge f(x) \in B\}=$ $\{x \mid f(x) \in B\}=B$.
3. If $C \subset A \subseteq X$ is not always true that $f(C) \subset f(A)$. Suppose that $\forall x \in A f(x)=p \in B$, then $f(C)=f(A)=\{p\}$.
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, then it is always true that $f^{-1}(C) \subset$ $f^{-1}(B)$. We prove this statement by contradiction. $C \subset B \Rightarrow \exists x \in$ $B \backslash C$. Certainly, $f^{-1}(x) \in f^{-1}(B)$ and $f^{-1}(C) \subseteq f^{-1}(B)$ because, by definition of function, $\forall x \in A . \exists!y \in B \cdot f(x)=y$. By contradiction, suppose that $\left.f^{-1}(C)=\right) f^{-1}(B)$. It follows that $\exists y \in C \cdot f^{-1}(y)=$ $f^{-1}(x) \Rightarrow \exists a=f^{-1}(y) \in A . f(a)=x=y \wedge x \neq y$. We reach an absurd situation.

Question 2. Let A, B be sets, and let $i d_{A}, i d_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=i d_{A}$ and $f \circ g=i d_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

Answer 2.1. We prove that
f is surjective: f is surjective $\Leftrightarrow \forall y \in B . \exists x \in A$ such that $f(x)=y$. Let $y \in B . g$ is a total function, so $g(y)$ is defined. In particular $g(y) \in A$. f is a total function, so $f(g(y))$ is defined. By hypothesis, $f \circ g=i d_{B} \Rightarrow$ $f(g(y))=i d_{B}(y)=y$. So $\forall y \in B . \exists x=g(y) \in A$ such that $f(x)=y$.
f is injective: f is injective $\Leftrightarrow f(x)=f\left(x^{\prime}\right) \rightarrow x=x^{\prime}$. Let $x \in A$. f is a total function so $f(x)$ is defined. In particular $f(x) \in B . g$ is a total function, so $g(f(x))$ is defined. By hypothesis, $g \circ f=i d_{A} \Rightarrow$ $g(f(x))=i d_{A}(x)=x$. Similarly, $g\left(f\left(x^{\prime}\right)\right)=x^{\prime}$. Suppose that $f(x)=f\left(x^{\prime}\right)$, then $x=g(f(x))=g\left(f\left(x^{\prime}\right)\right)=x^{\prime} \Rightarrow x=x^{\prime}$.

Question 3. (This question is more challenging.) Find two functions $f, g \in$ $(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} \cdot \operatorname{ran}(g \circ f)=\{n\}$.

Answer 3.1.

1. Let $g \in(\mathbb{N} \rightarrow \mathbb{N})$ be $g(x)=0$ if $x=2 n+1$ for some $n \in \mathbb{N}, x+1$ otherwise. It follows that $\operatorname{ran}(g)=\{x \in \mathbb{N} \mid x=0 \vee x$ is an odd number $\} \neq \mathbb{N}$. Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ be $f(x)=x$ if $x=2 n+1$ for some $n \in \mathbb{N}, x+1$ otherwise. It follows that $\operatorname{ran}(f)=\{x \in \mathbb{N} \mid x$ is an odd number $\} \neq \mathbb{N}$.
2. $\operatorname{ran}(f)$ is an infinite set because it contains all the natural odd numbers, while $\operatorname{ran}(g)$ is an infinite set because it's actually the set of all the natural numbers.
3. We prove that the function $h \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as $h(n)=f(n)+g(n)$ satisfies the condition $\operatorname{ran}(h)=\mathbb{N}$. We can state that $\operatorname{ran}(h) \subseteq \mathbb{N}$, so we have to prove that $\mathbb{N} \subseteq \operatorname{ran}(h)$. Let $x \in \mathbb{N}$. If x is an odd number, then $g(x)=0$ and $f(x)=x$, so $h(x)=f(x)+g(x)=x \Rightarrow x \in \operatorname{ran}(h)$. If x is an even number, then $x=2 n$ for some $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ be an even number, then $g(m)=m+1$ and $f(m)=m+1$, so $h(m)=$ $2(m+1)$. I can choose $m+1=n \Rightarrow h(m)=x$ Rightarrowx $\in \operatorname{ran}(h)$.
4. $\forall x \in \mathbb{N} f(n)$ is an odd number. By definition of g, it follows that $g(f(n))=0$. We can state that $\operatorname{ran}(g \circ f)=0$.
