Year 2013/14 - Number 3

October 3, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at

http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(a) = \{f(x) | x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B) = \{x | x \in X \land f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1} , but rather sets of such points)

- 1. For $A \subseteq X$, determine the relation $(\subseteq, =, \supseteq)$ between A and $f^{-1}(f(A))$.
- 2. For $B \subseteq Y$, determine the relation $(\subseteq, =, \supseteq)$ between B and $f(f^{-1}(B))$.
- 3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
- 4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

Answer 1.1.

- 1. By definition of $f^{-1}(B)$, it follows that $f^{-1}(f(A)) = \{x | x \in X \land f(x) \in f(A)\}$. The condition $f(x) \in f(A)$ is true iff $x \in A$ (by definition of f(A)). That's mean that $f^{-1}(f(A)) = \{x | x \in X \land x \in A\} = \{x | x \in A\} = A$.
- 2. By definition of f(A), it follows that $f(f^{-1}(B)) = \{f(x) | x \in f^{-1}(B)\}$. The condition $x \in f^{-1}(B)$ is true iff $x \in X \land f(x) \in B$ (by definition of $f^{-1}(B)$). That's mean that $f(f^{-1}(B)) = \{f(x) | x \in X \land f(x) \in B\} = \{x | f(x) \in B\} = B$.
- 3. If $C \subset A \subseteq X$ is not always true that $f(C) \subset f(A)$. Suppose that $\forall x \in A \ f(x) = p \in B$, then $f(C) = f(A) = \{p\}$.

4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, then it is always true that $f^{-1}(C) \subset f^{-1}(B)$. We prove this statement by contradiction. $C \subset B \Rightarrow \exists x \in B \setminus C$. Certainly, $f^{-1}(x) \in f^{-1}(B)$ and $f^{-1}(C) \subseteq f^{-1}(B)$ because, by definition of function, $\forall x \in A. \exists ! y \in B. f(x) = y$. By contradiction, suppose that $f^{-1}(C) =)f^{-1}(B)$. It follows that $\exists y \in C. f^{-1}(y) = f^{-1}(x) \Rightarrow \exists a = f^{-1}(y) \in A. f(a) = x = y \land x \neq y$. We reach an absurd situation.

Question 2. Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

Answer 2.1. We prove that

f is surjective: f is surjective $\Leftrightarrow \forall y \in B. \exists x \in A \text{ such that } f(x) = y$. Let $y \in B$. g is a total function, so g(y) is defined. In particular $g(y) \in A$. f is a total function, so f(g(y)) is defined. By hypothesis, $f \circ g = id_B \Rightarrow f(g(y)) = id_B(y) = y$. So $\forall y \in B. \exists x = g(y) \in A \text{ such that } f(x) = y$.

f is injective: f is injective $\Leftrightarrow f(x) = f(x') \to x = x'$. Let $x \in A$. f is a total function so f(x) is defined. In particular $f(x) \in B$. g is a total function, so g(f(x)) is defined. By hypothesis, $g \circ f = id_A \Rightarrow$ $g(f(x)) = id_A(x) = x$. Similarly, g(f(x')) = x'. Suppose that f(x) = f(x'), then $x = g(f(x)) = g(f(x')) = x' \Rightarrow x = x'$.

Question 3. (This question is more challenging.) Find two functions $f, g \in (\mathbb{N} \to \mathbb{N})$ that satisfy all the following conditions:

- 1. $ran(f) \neq \mathbb{N}$ and $ran(g) \neq \mathbb{N}$;
- 2. ran(f) and ran(g) are infinite sets;
- 3. $ran(h) = \mathbb{N}$ where h(n) = f(n) + g(n);
- 4. $\exists n \in \mathbb{N}.ran(g \circ f) = \{n\}.$

Answer 3.1.

- 1. Let $g \in (\mathbb{N} \to \mathbb{N})$ be g(x) = 0 if x = 2n + 1 for some $n \in \mathbb{N}, x + 1$ otherwise. It follows that $ran(g) = \{x \in \mathbb{N} | x = 0 \lor x \text{ is an odd} number\} \neq \mathbb{N}$. Let $f \in (\mathbb{N} \to \mathbb{N})$ be f(x) = x if x = 2n + 1 for some $n \in \mathbb{N}, x + 1$ otherwise. It follows that $ran(f) = \{x \in \mathbb{N} | x \text{ is an odd} number\} \neq \mathbb{N}$.
- 2. ran(f) is an infinite set because it contains all the natural odd numbers, while ran(g) is an infinite set because it's actually the set of all the natural numbers.

- 3. We prove that the function $h \in (\mathbb{N} \to \mathbb{N})$ defined as h(n) = f(n) + g(n)satisfies the condition $ran(h) = \mathbb{N}$. We can state that $ran(h) \subseteq \mathbb{N}$, so we have to prove that $\mathbb{N} \subseteq ran(h)$. Let $x \in \mathbb{N}$. If x is an odd number, then g(x) = 0 and f(x) = x, so $h(x) = f(x) + g(x) = x \Rightarrow x \in ran(h)$. If x is an even number, then x = 2n for some $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ be an even number, then g(m) = m + 1 and f(m) = m + 1, so h(m) =2(m+1). I can choose $m+1 = n \Rightarrow h(m) = x$ Rightarrowx $\in ran(h)$.
- 4. $\forall x \in \mathbb{N}$ f(n) is an odd number. By definition of g, it follows that g(f(n)) = 0. We can state that $ran(g \circ f) = 0$.