Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. $f^{-1}(f(A))=f^{-1}(\{f(x) \mid x \in A\})=\{x \mid x \in X \wedge f(x) \in\{f(x) \mid x \in A\}\}=$ $\{x \mid x \in X \wedge x \in A\}=A$.
2. $f\left(f^{-1}(B)\right)=f(\{x \mid x \in X \wedge f(x) \in B\})=\{f(x) \mid x \in\{x \mid x \in X \wedge f(x) \in$ $B\}\}=\{f(x) \mid x \in X \wedge f(x) \in B\}=\{y \in B \mid \exists x \in X . f(x)=y\} \subseteq B$.
3. No. For example, let $X=\{0,1\}, A=X, C=\{1\}$ and let $f(0)=f(1)=$ 42 ; then $C \subset A \subseteq X$ but still $f(C)=f(A)=\{42\}$.
4. No. For example, let $X=\{0\}, Y=\{8,9\}, B=Y, C=\{8\}, f(0)=8$; then $C \subset B \subseteq Y$ and $f^{-1}(B)=\{0\} \neq \emptyset$, yet $f^{-1}(C)=\{0\}=f^{-1}(B)$

2 Question

Let A, B be sets, and let $\operatorname{id}_{A}, \operatorname{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

- (Injective) By contraddiction, suppose f not injective i.e. $\exists x, z \in A .(x \neq y \wedge f(x)=f(z))$; let x, z be such numbers and note that because $f(x)=f(z)$ then $g(f(x))=$ $g(f(z))$; However, $x \neq z \Rightarrow i d_{A}(x) \neq i d_{A}(z) \Rightarrow g(f(x)) \neq g(f(z))$, which contraddicts the previous statement.
- (Surjective) By contraddiction, suppose f not surjective i.e. $\exists y \in B . \nexists x \in$ A. $f(x)=y$; let y be such number and let $z=g(y)$ and note $z \in A$. Then by hypothesis $f(z)=f(g(y))=i d_{B}(y)=y$, but the existance of z contraddicts the initial statement.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

Let $f(n)=\left\{\begin{array}{ll}n & \text { if } n \text { even } \\ 0 & \text { if } n \text { odd }\end{array}, g(n)=\left\{\begin{array}{ll}0 & \text { if } n \text { even } \\ n & \text { if } n \text { odd }\end{array}\right.\right.$. Conditions 1 and 2 are
obviously satisfied. Note $h=i d_{\mathbb{N}}$, thus 3 is also satisfied. Finally, consder $g \circ f: f$ maps any natural to an even number and g maps any even to 0 , thus $\operatorname{ran}(g \circ f)=\{0\}$.

