Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Recall the notions of image and preimage of a set with respect to a function: formally, if $A \subseteq X$, then $f(A)=\{f(x) \mid x \in A\} \subseteq Y$ and that, if $B \subseteq Y$, then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\} \subseteq X$. (Note that here A and B are not points in the domains of f, f^{-1}, but rather sets of such points)

1. For $A \subseteq X$, determine the relation $(\subseteq,=, \supseteq)$ between A and $f^{-1}(f(A))$.
2. For $B \subseteq Y$, determine the relation $(\subseteq,=, \supseteq)$ between B and $f\left(f^{-1}(B)\right)$.
3. If $C \subset A \subseteq X$, is it always true that $f(C) \subset f(A)$?
4. If $C \subset B \subseteq Y$ and $f^{-1}(B) \neq \emptyset$, is it always true that $f^{-1}(C) \subset f^{-1}(B)$?

1.1 Answer

1. $A \subseteq f^{-1}(f(A))$: Let's take $a \in A \subseteq X$. Then $f(a) \in f(A)$. Now I have that $f^{-1}(f(A))=\{x \mid x \in X \wedge f(x) \in f(A)\}$. Then $a \in f^{-1}(f(A))$. On the contrary, let's call $f(A)=C$. I could take $a^{\prime} \in X \backslash A$ such that it is mapped by f into an element of C. In this case $a^{\prime} \in X, f\left(a^{\prime}\right) \in C=f(A)$ then $a^{\prime} \in f^{-1}(f(A))$ but, by constraction, $a^{\prime} \notin A$. This case is possibile since f, in generale, is not injective.
2. $f\left(f^{-1}(B)\right) \subseteq B$: Let's take $b \in f\left(f^{-1}(B)\right)$. This means that $b \in\{f(x) \mid x \in$ $\left.f^{-1}(B)\right\}$. Let's say that $b=f(a)$ for some $a \in X$. Then $a \in f^{-1}(B)=$ $\{x \mid x \in X \wedge f(x) \in B\}$, which means that $b=f(a) \in B$. On the contrary, Let's take $b \in B$ such that $\nexists a \in A . b=f(a)$. This is possibile since f, in general, is not surjective. Then $\forall C \subseteq X . b \notin f(C)$, in particular $b \notin f\left(f^{-1}(B)\right)$.
3. No: If I take $b \in Y$ and I define a function $f \in(X \rightarrow Y)$ such that $\forall a \in A . f(a)=b$, then $f(A)=\{b\}=f(C)$.
4. No: I define a function $f \in(X \rightarrow Y)$ such that $\forall b \in B \backslash C . \nexists a \in X . b=f(a)$. Then $f^{-1}(B)=\{x \mid x \in X \wedge f(x) \in B\}=\{x \mid x \in X \wedge f(x) \in C\}=f^{-1}(C)$.

2 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \operatorname{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$, where as usual \circ denotes function composition. Prove that f is a bijection (i.e., injective and surjective).

2.1 Answer

1. f injective: Let's take $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$ and I want to show that $a_{1}=a_{2} . a_{1}=i d_{A}\left(a_{1}\right)=g \circ f\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=$ $g \circ f\left(a_{2}\right)=i d_{A}\left(a_{2}\right)=a_{2}$. Then f is injective.
2. f surjective: Let's take $b_{0} \in B$, I want to show that $\exists a_{0} \in A . f\left(a_{0}\right)=b_{0}$. $b_{0}=i d_{B}\left(b_{0}\right)=f \circ g\left(b_{0}\right)=f\left(g\left(b_{0}\right)\right)$. But $g \in(B \rightarrow A)$ and this means that $\forall b \in B . \exists!a \in A . g(b)=a$. I call $a_{0}=g\left(b_{0}\right)$. Then f is surjective.

3 Question

(This question is more challenging.) Find two functions $f, g \in(\mathbb{N} \rightarrow \mathbb{N})$ that satisfy all the following conditions:

1. $\operatorname{ran}(f) \neq \mathbb{N}$ and $\operatorname{ran}(g) \neq \mathbb{N}$;
2. $\operatorname{ran}(f)$ and $\operatorname{ran}(g)$ are infinite sets;
3. $\operatorname{ran}(h)=\mathbb{N}$ where $h(n)=f(n)+g(n)$;
4. $\exists n \in \mathbb{N} . \operatorname{ran}(g \circ f)=\{n\}$.

3.1 Answer

Let's define:
$f(n)=\left\{\begin{array}{c}n \text { if } n \text { is even } \\ 0 \text { if } n \text { is odd }\end{array} \quad ; g(n)=\left\{\begin{array}{c}n \text { if } n \text { is odd } \\ 0 \text { if } n \text { is even }\end{array}\right.\right.$
Now I proove that theese two functions satisfy all the previous conditions:

1. By definition, $\operatorname{ran}(f)=\{n \in \mathbb{N} \mid n$ is even $\} \neq \mathbb{N}$ and $\operatorname{ran}(g)=\{0\} \cup\{n \in$ $\mathbb{N} \mid n$ is odd $\} \neq \mathbb{N}$;
2. It is obvious from 1. ;
3. If n is even then $h(n)=n+0=n$, otherwise $h(n)=0+n=n$. Then $h=i d_{\mathbb{N}}$, which implies that $\operatorname{ran}(h)=\mathbb{N}$.
4. $g \circ f(n)=g(f(n))$. If I find that $\forall n \in \mathbb{N} . g \circ f(n)=0$ then $\operatorname{ran}(g \circ f)=\{0\}$. Let's try:
(a) n even $\Rightarrow g(f(n))=g(n)=0$
(b) n odd $\Rightarrow g(f(n))=g(0)=0$
