Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

$1 p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i} ; \quad$ the hypothesis $(*)$ is sufficient to conclude that p_{i} holds;

Since we have

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

so that $A_{0} \cap A_{1}=A_{1}, A_{0} \cap A_{2} \cap A_{3}=A_{3}$, and
$A_{0} \cap A_{1} \cap \ldots \cap A_{k}=A_{k}=\bigcap_{i=0}^{k} A_{i} \quad$ So p_{1} holds
$2 p_{2}$: if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$; the hypothesis $(*)$ is sufficient to conclude that p_{2} holds
Choose abitrary $j=0$. Let $A_{j}=A_{0}=\{0,1,2,3\}$, and $A_{j+1}=A_{1}=$ $\{0,1,2,3\}$. A_{0} and A_{1} both satisfies the hypothesis $(*)$, and $A_{0}=A_{1}$. So the p_{2} holds.
$3 p_{3}$: for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{3}

Looking back into problem 2, we know that there exists $i \in \mathbb{N}$ such that $A_{i}=A_{i+1}$. So the p_{3} holds for this case.

However, there are cases that p_{3} doesn't hold. For example, if we choose a sequence of sets like this
$A_{0}=\{0,1,2,3\}, A_{1}=\{1,2,3\}$. Then it's clearly that $A_{0} \neq A_{1}$.
$4 \quad p_{4}$: if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
the hypothesis $(*)$ is sufficient to conclude that p_{4} does not hold.
From hypothesis $(*)$ and the condition of p_{4}, we know that $\forall i \in \mathbb{N}$. $A_{i+1} \subset$ $A_{i} \subset \ldots \subset A_{0} \subset \mathbb{N}$

And $A_{i} \neq \emptyset$ because if $A_{i}=\emptyset$, then $A_{i+1}=\emptyset$, which does not satisfy the hypothesis $A_{i} \neq A_{i+1}$

We can always choose an abitrary $x \in A_{i+1}$ since $A_{i+1} \neq \emptyset$. According to the preliminaries, we have $\bigcap_{i=0}^{\infty} A_{i} \neq \emptyset$ since $\bigcap_{i=0}^{\infty} A_{i}$ always have at least 1 element x.

There for p_{4} does not hold.
$5 \quad p_{5}$: if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
the hypothesis $(*)$ is sufficient to conclude that p_{5} holds;
According to the preliminaries
$\bigcap_{i=0}^{\infty} A_{i}=\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$
Since A_{i} is finite, $\bigcap_{i=0}^{\infty} A_{i}$ is a set that contains elements that appear in all set $A_{i}, \forall i \in \mathbb{N}$, so that we can always count the number of elements in set $\bigcap_{i=0}^{\infty} A_{i}$. So the p_{5} holds.
$6 p_{6}$: if $\forall i \in \mathbb{N} . A_{i}$ is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite; the hypothesis $(*)$ is not sufficient to conclude that p_{6} does not hold
$7 p_{7}:$ if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite. the hypothesis $(*)$ is sufficient to conclude that p_{7} holds

