Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} \ x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \ \land \ i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

 $\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

1 p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcap_{i=0}^k A_i$; the hypothesis (*) is sufficient to conclude that p_i holds;

Since we have

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

so that $A_0 \cap A_1 = A_1$, $A_0 \cap A_2 \cap A_3 = A_3$, and

 $A_0 \cap A_1 \cap \ldots \cap A_k = A_k = \bigcap_{i=0}^k A_i$ So p_1 holds

2 p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$; the hypothesis (*) is sufficient to conclude that p_2 holds

Choose abitrary j = 0. Let $A_j = A_0 = \{0, 1, 2, 3\}$, and $A_{j+1} = A_1 = \{0, 1, 2, 3\}$. A_0 and A_1 both satisfies the hypothesis (*), and $A_0 = A_1$. So the p_2 holds.

3 p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;

the hypothesis (*) is not sufficient to conclude anything about the truth of p_3

Looking back into problem 2, we know that there exists $i \in \mathbb{N}$ such that $A_i = A_{i+1}$. So the p_3 holds for this case.

However, there are cases that p_3 doesn't hold. For example, if we choose a sequence of sets like this

 $A_0 = \{0, 1, 2, 3\}, A_1 = \{1, 2, 3\}.$ Then it's clearly that $A_0 \neq A_1$.

4 p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;

the hypothesis (*) is sufficient to conclude that p_4 does not hold.

From hypothesis (*) and the condition of p_4 , we know that $\forall i \in \mathbb{N}$. $A_{i+1} \subset A_i \subset \ldots \subset A_0 \subset \mathbb{N}$

And $A_i \neq \emptyset$ because if $A_i = \emptyset$, then $A_{i+1} = \emptyset$, which does not satisfy the hypothesis $A_i \neq A_{i+1}$

We can always choose an abitrary $x \in A_{i+1}$ since $A_{i+1} \neq \emptyset$. According to the preliminaries, we have $\bigcap_{i=0}^{\infty} A_i \neq \emptyset$ since $\bigcap_{i=0}^{\infty} A_i$ always have at least 1 element x.

There for p_4 does not hold.

- 5 p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite; the hypothesis (*) is sufficient to conclude that p_5 holds; According to the preliminaries $\bigcap_{i=0}^{\infty} A_i = \{x \mid \forall i \in \mathbb{N} \ x \in A_i\}$ Since A_i is finite, $\bigcap_{i=0}^{\infty} A_i$ is a set that contains elements that appear in all set
- $A_i, \forall i \in \mathbb{N}$, so that we can always count the number of elements in set $\bigcap_{i=0}^{\infty} A_i$. So the p_5 holds.
- 6 p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite; the hypothesis (*) is not sufficient to conclude that p_6 does not hold
- 7 p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite. the hypothesis (*) is sufficient to conclude that p_7 holds