Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. $p(x)=2^{x+1} P=\left\{x \in \mathbb{N}: 2^{x+1}\right\}$
$q(x)=2 x Q=\{x \in \mathbb{N}: 2 x\}$
2. it is not possible.

We proceed by contradiction
Suppose that $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x) \wedge Q \subset P$. This means that if we take any $x \in P$, for the definition of $P, p(x)$ holdsand for $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ we have that $q(x)$ holds and $x \in Q$.
Therefore $\forall x \in \mathbb{N} . x \in P \Longrightarrow x \in Q$. But this contradicts $Q \subset P$
3. it is not possible.
$P \backslash Q \neq \emptyset \Longrightarrow \exists p \in P: p \notin Q \Longrightarrow \exists x \in \mathbb{N} . p(x) \wedge \neg q(x) \Longrightarrow \exists x \in$ $\mathbb{N} . \neg \neg(p(x) \wedge \neg q(x)) \Longrightarrow \exists x \in \mathbb{N} . \neg(\neg p(x) \wedge q(x)) \Longrightarrow \exists x \in \mathbb{N} . \neg(p(x) \Longrightarrow$ $q(x)) \Longrightarrow \neg \forall x \in \mathbb{N} . p(x) \Longrightarrow q(x)$ which is a contradiction.
4. $p(x)=x>2 \quad P=\{x \in \mathbb{N}: x>2\}$
$q(x)=x>1 \quad Q=\{x \in \mathbb{N}: x>1\}$
$Q \backslash P=\{2\}$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. the hypothesis $(*)$ is sufficient to conclude that p_{1} holds We proceed by induction.

- $k=0$

$$
A_{0}=\bigcap_{i=0}^{0} A_{i}=A_{0}
$$

- inductive step

Suppose $p_{1} h o l d s$ for $k \in \mathbb{N}$
$k=k+1$
$A_{k+1}=\bigcap_{i=0}^{k+1} A_{i}=\left(\bigcap_{i=0}^{k} A_{i}\right) \bigcap A_{k+1}=A_{k} \bigcap A_{k+1}$
since $A_{k} \supseteq A_{k+1} \Longrightarrow A_{k} \bigcap A_{k+1}=A_{k+1}$
2. the hypothesis $(*)$ is sufficient to conclude that p_{2} holds

Suppose by contradiction $\neg\left(\exists j \in \mathbb{N}: A_{j}=A_{j+1}\right) \Longrightarrow \forall j \in \mathbb{N}$. $A_{j} \neq$ A_{j+1}
from this and the assumption $(*)$ we have $\mathbb{N} \supset \cdots \supset A_{j} \supset A_{j+1} \supset \cdots$
We have an infinite sequence of finite sets with strictly decreasing cardinality. Since the cardinality of A_{0} is finite, at some point we have a set with 0-cardinality.
Therefore we will have $A_{j}=\emptyset$ and $A_{j+1}=\emptyset$ and thus $A_{j}=A_{j+1}$ which is a contradiction.
3. the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{3}.

- TRUE: $A_{0}=\emptyset, A_{1}=\emptyset$
- FALSE: $A_{0}=\{0,1,2,3\}, A_{1}=\{0,1,2\}$

4. the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{4}.

- If A_{i} is finite, $A_{i} \neq A_{i+1}$ is false because of what we have prove in p 2 . Hence for implication p4 is true.
- If A_{i} is infinite we find a counter-example that makes p4 false: $A_{0}=\operatorname{Even} \cup\{1\}, A_{1}=\operatorname{Even} \cup\{1\} \backslash\{0\}, A_{2}=\operatorname{Even} \cup\{1\} \backslash\{0,2\}, \ldots$ $\bigcap_{i=0}^{\infty} A_{i}=1$

5. the hypothesis $(*)$ is sufficient to conclude that p_{5} holds

We have an infinite sequence of finite sets with strictly decreasing cardinality. Since the cardinality of A_{0} is finite, at some point we have a set with 0-cardinality.
Therefore the resulting intersection will be an empty set which is finite.
6. the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{6}

- FALSE: if we take $\mathbb{N} \supseteq A_{0}=A_{1}=A_{2}=\ldots \quad \Longrightarrow \bigcap_{i=0}^{\infty} A_{i}=A_{0}=$ $A_{1}=\ldots$ is infinite
- TRUE: if if we take $\mathbb{N} \supset A_{0} \supset A_{1} \supset A_{2} \supset \ldots \Longrightarrow \bigcap_{i=0}^{\infty} A_{i}$ is finite 7. the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{7}
- TRUE: if we take $\mathbb{N} \supseteq A_{0}=A_{1}=A_{2}=\ldots \quad \Longrightarrow \bigcap_{i=0}^{\infty} A_{i}=A_{0}=$ $A_{1}=\ldots$ is infinite
- FALSE: if if we take $\mathbb{N} \supset A_{0} \supset A_{1} \supset A_{2} \supset \ldots \Longrightarrow \bigcap_{i=0}^{\infty} A_{i}$ is infinite. This is false because of the counter-example seen in p 4 : $A_{0}=\operatorname{Even} \cup\{1\}, A_{1}=\operatorname{Even} \cup\{1\} \backslash\{0\}, A_{2}=\operatorname{Even} \cup\{1\} \backslash\{0,2\}, \ldots$ $\bigcap_{i=0}^{\infty} A_{i}=1$

