Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

- 1. $p(x) = 2^{x+1} P = \{x \in \mathbb{N} : 2^{x+1}\}$ $q(x) = 2x Q = \{x \in \mathbb{N} : 2x\}$
- 2. it is not possible. We proceed by contradiction Suppose that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x) \land Q \subset P$. This means that if we take any $x \in P$, for the definition of P, p(x) holds and for $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ we have that q(x) holds and $x \in Q$. Therefore $\forall x \in \mathbb{N} . x \in P \implies x \in Q$. But this contradicts $Q \subset P$

3. it is not possible.

 $P \setminus Q \neq \emptyset \implies \exists p \in P : p \notin Q \implies \exists x \in \mathbb{N}. p(x) \land \neg q(x) \implies \exists x \in \mathbb{N}. \neg \neg (p(x) \land \neg q(x)) \implies \exists x \in \mathbb{N}. \neg (\neg p(x) \land q(x)) \implies \exists x \in \mathbb{N}. \neg (p(x) \land q(x)) \implies \forall x \in \mathbb{N}. p(x) \implies q(x) \text{ which is a contradiction.}$

 $\begin{array}{ll} 4. \ p(x) = x > 2 & P = \{x \in \mathbb{N} : \ x > 2\} \\ q(x) = x > 1 & Q = \{x \in \mathbb{N} : \ x > 1\} \\ Q \backslash P = \{2\} \end{array}$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} \ x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \ \land \ i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

 $\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;

3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;

4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;

- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. the hypothesis (*) is sufficient to conclude that p_1 holds We proceed by induction.
 - k = 0 $A_0 = \bigcap_{i=0}^0 A_i = A_0$
 - inductive step Suppose $p_1 holds$ for $k \in \mathbb{N}$ k = k + 1 $A_{k+1} = \bigcap_{i=0}^{k+1} A_i = (\bigcap_{i=0}^k A_i) \bigcap A_{k+1} = A_k \bigcap A_{k+1}$ since $A_k \supseteq A_{k+1} \implies A_k \bigcap A_{k+1} = A_{k+1}$
- 2. the hypothesis (*) is sufficient to conclude that p_2 holds Suppose by contradiction $\neg(\exists j \in \mathbb{N} : A_j = A_{j+1}) \implies \forall j \in \mathbb{N}. A_j \neq A_{j+1}$

from this and the assumption (*) we have $\mathbb{N} \supset \cdots \supset A_j \supset A_{j+1} \supset \cdots$

We have an infinite sequence of finite sets with strictly decreasing cardinality. Since the cardinality of A_0 is finite, at some point we have a set with 0-cardinality.

Therefore we will have $A_j = \emptyset$ and $A_{j+1} = \emptyset$ and thus $A_j = A_{j+1}$ which is a contradiction.

- 3. the hypothesis (*) is not sufficient to conclude anything about the truth of p_3 .
 - TRUE: $A_0 = \emptyset$, $A_1 = \emptyset$
 - FALSE: $A_0 = \{0, 1, 2, 3\}, A_1 = \{0, 1, 2\}$
- 4. the hypothesis (*) is not sufficient to conclude anything about the truth of p_4 .
 - If A_i is finite, A_i ≠ A_{i+1} is false because of what we have prove in p2. Hence for implication p4 is true.
 - If A_i is infinite we find a counter-example that makes p4 false: $A_0 = Even \cup \{1\}, \ A_1 = Even \cup \{1\} \setminus \{0\}, \ A_2 = Even \cup \{1\} \setminus \{0, 2\}, \dots$ $\bigcap_{i=0}^{\infty} A_i = 1$
- 5. the hypothesis (*) is sufficient to conclude that p_5 holds We have an infinite sequence of finite sets with strictly decreasing cardinality. Since the cardinality of A_0 is finite, at some point we have a set with 0-cardinality. Therefore the resulting intersection will be an empty set which is finite.
- 6. the hypothesis (*) is not sufficient to conclude anything about the truth of p_6

- FALSE: if we take $\mathbb{N} \supseteq A_0 = A_1 = A_2 = \dots \implies \bigcap_{i=0}^{\infty} A_i = A_0 = A_1 = \dots$ is infinite
- TRUE: if if we take $\mathbb{N} \supset A_0 \supset A_1 \supset A_2 \supset ... \implies \bigcap_{i=0}^{\infty} A_i$ is finite
- 7. the hypothesis (*) is not sufficient to conclude anything about the truth of p_7
 - TRUE: if we take $\mathbb{N} \supseteq A_0 = A_1 = A_2 = \dots \implies \bigcap_{i=0}^{\infty} A_i = A_0 = A_1 = \dots$ is infinite
 - FALSE: if if we take $\mathbb{N} \supset A_0 \supset A_1 \supset A_2 \supset ... \implies \bigcap_{i=0}^{\infty} A_i$ is infinite. This is false because of the counter-example seen in p4: $A_0 = Even \cup \{1\}, A_1 = Even \cup \{1\} \setminus \{0\}, A_2 = Even \cup \{1\} \setminus \{0, 2\}, ...$ $\bigcap_{i=0}^{\infty} A_i = 1$