Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

- 1. Let $p(x) \Leftrightarrow x \leq 0$ and $q(x) \Leftrightarrow x \leq 1$; then $P = \{0\}$ and $Q = \{0, 1\}$.
- 2. This is not possible. Proof by contraddiction: Suppose such p and q exist. Then either $(A) \exists x \in \mathbb{N}. p(x)$ or $(B) \nexists x \in \mathbb{N}. p(x)$

If (A), then let x be any number s.t. p(x). Note $x \in P \Leftrightarrow p(x)$ by def of P. So q(x) holds by hypothesis, so $x \in Q$. We showed that $\forall x \in \mathbb{N}. x \in P \Rightarrow x \in Q$. So $\nexists x \in \mathbb{N}. x \in P \land x \notin Q$, which contraddicts the hypothesis "2.". If (B), then $P = \emptyset$, and there exist no Q st $Q \subset \emptyset$. 3. This is not possible. Proof by contraddiction: Suppose such p and q exist. Then either (A) $\exists x \in \mathbb{N}.p(x)$ or (B) $\nexists x \in \mathbb{N}.p(x)$

If (A) then, by 2.(A), $\nexists x \in \mathbb{N} \cdot x \in P \land x \notin Q$, which contraddicts the hypothesis "3.".

If (B), then $P = \emptyset$, then $P \setminus Q = \emptyset$, contraddicting "3.".

4. Let $p(x) \Leftrightarrow x \leq 0$ and $q(x) \Leftrightarrow x \leq 1$; then $P = \{0\}$ and $Q = \{0, 1\}$, so $Q \setminus P = \{1\}$.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds (\vDash ((*) \Rightarrow p_i)); or
- the hypothesis (*) is sufficient to conclude that p_i does not hold $(\vDash ((*) \Rightarrow \neg p_i))$; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of $p_i (\vDash (((*) \not\Rightarrow \neg p_i) \land ((*) \not\Rightarrow p_i)))$.

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. p_1 is possible but not necessary, in fact $A_k = \bigcap_{i=0}^k A_i \Rightarrow A_k = A_{k-1} \cap (\bigcap_{i=0}^{k-2} A_i) \Rightarrow A_k \subseteq A_{k-1}$, but the backward implication does not hold (for example, $A_0 = \{1\}$ and $\forall i \in \mathbb{N} \setminus \{0\}$. $A_i = \emptyset$ satisfies (*) but not p_1).
- 2. p_2 holds, in fact the hypothesis implies A_0 finite and by(*) at each step the next set is either equal to the previous (in which case we have found such j) or it has less elements. But if each set starting from A_1 has less elements than the previous, then in a finite number of steps we will find $A_n = \emptyset$, so by(*) it must be $A_{n+1} = \emptyset$, so we found an index that satisfies the property.
- 3. p_3 is possible but not necessary: it only constraints that if there is one finite set A_i , then all subsequent sets will be equal to it, but this does not contraddict(*). However,(*) does not impy this (for example, $A_0 = \{1\}$ and $\forall i \in \mathbb{N} \setminus \{0\}$. $A_i = \emptyset$ satisfies(*) but not p_3).
- 4. p_4 is possible but not necessary:
 - (a) if $A_0 = \mathbb{N}$, $A_1 = \mathbb{N} \setminus \{1\}$, $A_2 = A_1 \setminus \{2\}$,... then(*) and the hypothesis of p_4 hold, but $\bigcap_{i=0}^{\infty} A_i = \{0\} \neq \emptyset$, so p_4 does not hold, so $(*) \not\Rightarrow p_4$
 - (b) if $A_0 = \mathbb{N}$, $A_1 = \mathbb{N} \setminus \{0\}$, $A_2 = A_1 \setminus \{1\}$,... then both(*) and p_4 hold, so $(*) \not\Rightarrow \neg p_4$
- 5. p_5 holds, because the intersection of finite sets is always finite (as it is a subset of each finite set).
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite; p_6 is possible but not necessary:
 - (a) $(\forall i \in \mathbb{N}. A_i = \mathbb{N})$ satisfies(*)but not p_6 , so(*) $\neq p_6$
 - (b) $(\forall i \in \mathbb{N}. A_i = \{0\})$ satisfies both(*) and p_6 , so(*) $\neq \neg p_6$
- 7. p_7 is possible but not necessary: if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.
 - (a) $(A_0 = \mathbb{N}, A_1 = \mathbb{N} \setminus \{1\}, A_2 = A_1 \setminus \{2\}, \ldots)$ satisfies(*) but not p_7 (because $\bigcap_{i=0}^{\infty} A_i = \{0\}$ is finite), so(*) $\neq p_7$
 - (b) $(\forall i \in \mathbb{N}. A_i = \{0\})$ satisfies both(*) and p_7 , so(*) $\not\Rightarrow \neg p_7$