Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. Let $p(x) \Leftrightarrow x \leq 0$ and $q(x) \Leftrightarrow x \leq 1$; then $P=\{0\}$ and $Q=\{0 ; 1\}$.
2. This is not possible. Proof by contraddiction: Suppose such p and q exist. Then either (A) $\exists x \in \mathbb{N} . p(x)$ or (B) $\nexists x \in \mathbb{N} . p(x)$

If (A), then let x be any number s.t. $p(x)$. Note $x \in P \Leftrightarrow p(x)$ by def of P. So $q(x)$ holds by hypothesis, so $x \in Q$. We showed that $\forall x \in \mathbb{N}$. $x \in P \Rightarrow$ $x \in Q$. So $\nexists x \in \mathbb{N} . x \in P \wedge x \notin Q$, which contraddicts the hypothesis "2.". If (B), then $P=\emptyset$, and there exist no Q st $Q \subset \emptyset$.
3. This is not possible. Proof by contraddiction: Suppose such p and q exist. Then either (A) $\exists x \in \mathbb{N} . p(x)$ or (B) $\nexists x \in \mathbb{N} . p(x)$

If (A) then, by $2 .(\mathrm{A}), \nexists x \in \mathbb{N} . x \in P \wedge x \notin Q$, which contraddicts the hypothesis
" 3 .".
If (B), then $P=\emptyset$, then $P \backslash Q=\emptyset$, contraddicting " 3 .".
4. Let $p(x) \Leftrightarrow x \leq 0$ and $q(x) \Leftrightarrow x \leq 1$; then $P=\{0\}$ and $Q=\{0 ; 1\}$, so $Q \backslash P=\{1\}$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds $\left(\vDash\left((*) \Rightarrow p_{i}\right)\right)$; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold $\left(\vDash\left((*) \Rightarrow \neg p_{i}\right)\right)$; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of $p_{i}\left(\vDash\left(\left((*) \nRightarrow \neg p_{i}\right) \wedge\left((*) \nRightarrow p_{i}\right)\right)\right)$.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. p_{1} is possible but not necessary, in fact $A_{k}=\bigcap_{i=0}^{k} A_{i} \Rightarrow A_{k}=A_{k-1} \cap$ $\left(\bigcap_{i=0}^{k-2} A_{i}\right) \Rightarrow A_{k} \subseteq A_{k-1}$, but the backward implication does not hold (for example, $A_{0}=\{1\}$ and $\forall i \in \mathbb{N} \backslash\{0\} . A_{i}=\emptyset$ satisfies $(*)$ but not p_{1}).
2. p_{2} holds, in factthe hypothesis implies A_{0} finite and by $(*)$ at each step the next set is either equal to the previous (in which case we have found such j) or it has less elements. But if each set starting from A_{1} has less elements than the previous, then in a finite number of steps we will find $A_{n}=\emptyset$, so $\operatorname{by}(*)$ it must be $A_{n+1}=\emptyset$, so we found an index that satisfies the property.
3. p_{3} is possible but not necessary: it only constraints that if there is one finite set A_{i}, then all subsequent sets will be equal to it, but this does not contraddict $(*)$. However, $(*)$ does not impy this (for example, $A_{0}=$ $\{1\}$ and $\forall i \in \mathbb{N} \backslash\{0\} . A_{i}=\emptyset$ satisfies $(*)$ but not $\left.p_{3}\right)$.
4. p_{4} is possible but not necessary:
(a) if $A_{0}=\mathbb{N}, A_{1}=\mathbb{N} \backslash\{1\}, A_{2}=A_{1} \backslash\{2\}, \ldots$ then $(*)$ and the hypothesis of p_{4} hold, but $\bigcap_{i=0}^{\infty} A_{i}=\{0\} \neq \emptyset$, so p_{4} does not hold, so $(*) \nRightarrow p_{4}$
(b) if $A_{0}=\mathbb{N}, A_{1}=\mathbb{N} \backslash\{0\}, A_{2}=A_{1} \backslash\{1\}, \ldots$ then $\operatorname{both}(*)$ and p_{4} hold, so $(*) \nRightarrow \neg p_{4}$
5. p_{5} holds, because the intersection of finite sets is always finite (as it is a subset of each finite set).
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, $\operatorname{then} \bigcap_{i=0}^{\infty} A_{i}$ is finite; p_{6} is possible but not necessary:
(a) $\left(\forall i \in \mathbb{N} . A_{i}=\mathbb{N}\right)$ satisfies $(*)$ but not $p_{6}, \operatorname{so}(*) \nRightarrow p_{6}$
(b) $\left(\forall i \in \mathbb{N} . A_{i}=\{0\}\right)$ satisfies $\operatorname{both}(*)$ and $p_{6}, \operatorname{so}(*) \nRightarrow \neg p_{6}$
7. p_{7} is possible but not necessary: if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.
(a) $\left(A_{0}=\mathbb{N}, A_{1}=\mathbb{N} \backslash\{1\}, A_{2}=A_{1} \backslash\{2\}, \ldots\right.$) satisfies $(*)$ but $\operatorname{not} p_{7}$ (because $\bigcap_{i=0}^{\infty} A_{i}=$ $\{0\}$ is finite $),$ so $(*) \nRightarrow p_{7}$
(b) $\left(\forall i \in \mathbb{N} . A_{i}=\{0\}\right)$ satisfies $\operatorname{both}(*)$ and $p_{7}, \operatorname{so}(*) \nRightarrow \neg p_{7}$
