Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

- 1. We can define p(x) as $x \leq 5$ and q(x) as $x \leq 10$ therefore P is included in Q.
- 2. Impossible. We are dealing with natural numbers so the requirement $\forall x \in \mathbb{N}. \ p(x) \Rightarrow q(x)$ essentially says that p(x) always implies q(x) wich translated in sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$ means that P is a subset of Q. Therefore $Q \subset P$ (strict inclusion) is impossible.
- 3. From the statements above we know that $P \subset Q$ and that $Q \subset P$ is impossible. Therefore, $P \setminus Q = \emptyset$.
- 4. If we take the properties as defined in point 1, we have $P \subset Q$. So $Q \setminus P = \{6, 7, 8, 9, 10\} \neq \emptyset$.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. p_1 holds. From the hypothesis (*) we know that A_k is a subset of each of the following sets $A_0, A_1, ..., A_{k-1}$. Therefore, the intersection $A_0 \cap A_1 \cap \cdots \cap A_k = A_k$.
- 2. p_2 holds. It is always true because we can have two possibilities: wether $A_j = A_{j+1}$ or by decreasing, since $\forall i \in \mathbb{N}$. A_i is finite we reach some point k where $A_k = A_{k+1} = \emptyset$.
- 3. The hypothesis is not sufficient to conclude anything about the truth of p_3 .
- 4. p_4 holds. Since we have a strict inclusion going to infinity the intersection of the sets will be the empty set.

- 5. p_5 holds. $\forall i \in \mathbb{N}$. A_i is finite and the intersection of finite sets is finite.
- 6. p_6 does not hold. We can take $A_i = \mathbb{N}$ and the intersection is not finite.
- 7. p_7 holds. The hypothesis is not sufficient to conclude anything because if the sequence is decreasing then the intersection is the empty set, otherwise the intersection is infinite.