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1 Question

In this exercise, p(z) and ¢(z) will be two unary properties over natural numbers,
and P and @ will denote the sets P = {x € N: p(z) holds} and Q@ = {z € N :
q(z) holds}. If possible, for each of the cases below find two properties p(z) and
q(z) such that Yz € N. p(z) = ¢(x) and

x)

1. P C Q (strict inclusion);
2. @ C P (strict inclusion);
3

- P\Q #0;
4. Q\ P 0.

If for some of the above cases it’s impossible to find such properties, provide a
brief explanation of why is it so.

1.1 Answer

1. We can define p(z) as z < 5 and ¢(z) as ¢ < 10 therefore P is included in
Q.

2. Impossible. We are dealing with natural numbers so the requirement
Vr € N. p(x) = ¢q(z) essentially says that p(z) always implies g(z) wich
translated in sets P = {z € N : p(x) holds} and Q@ = {z € N : ¢(z)
holds} means that P is a subset of Q). Therefore @) C P (strict inclusion)
is impossible.

3. From the statements above we know that P C @ and that Q C P is
impossible. Therefore, P\ Q = (.

4. If we take the properties as defined in point 1, we have P C @. So
Q\P={6,7,8,9,10} # 0.
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Preliminaries

Given an infinite sequence of sets (A;);en, we define ()2, A; = {4; | i € N} =

3

Question

Assume (A4;);en to be an infinite sequence of sets of natural numbers, satisfying

ND A2 A DA 0 Az--- (%)

For each property p; shown below, state whether

e the hypothesis (x) is sufficient to conclude that p; holds; or

e the hypothesis (x) is sufficient to conclude that p; does not hold; or

e the hypothesis (%) is not sufficient to conclude anything about the truth

of p;.

Justify your answers (briefly).

. p1: Vke N A, = ﬂfzo Ay

po: if Vi € N. A; is finite, then there exists j € N such that A; = A;,4;
ps: for all 4, if A; is finite, then A; = A;1;

paz i Vi € N. Ay # Ay, then (g A; = 0;

ps: if Vi € N. A, is finite, then ;2 A; is finite;

pe: if Vi € N. A; is infinite, then ;2 A; is finite;

pr: if Vi € N. A; is infinite, then ;2 A; is infinite.

Answer

. p1 holds. From the hypothesis (x) we know that Ay is a subset of each of

the following sets Ag, A1, ..., Ax_1. Therefore, the intersection 49 N A; N

. p2 holds. It is always true because we can have two possibilities: wether

Aj = Aj41 or by decreasing, since Vi € N. A, is finite we reach some point
k where Ay = A1 = 0.

The hypothesis is not sufficient to conclude anything about the truth of
p3-

p4 holds. Since we have a strict inclusion going to infinity the intersection
of the sets will be the empty set.



. ps holds. Vi € N. A; is finite and the intersection of finite sets is finite.
. ps does not hold. We can take A; = N and the intersection is not finite.

. p7 holds. The hypothesis is not sufficient to conclude anything because if
the sequence is decreasing then the intersection is the empty set, otherwise
the intersection is infinite.
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