Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. We can define $p(x)$ as $x \leq 5$ and $q(x)$ as $x \leq 10$ therefore P is included in Q.
2. Impossible. We are dealing with natural numbers so the requirement $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ essentially says that $p(x)$ always implies $q(x)$ wich translated in sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}: q(x)$ holds $\}$ means that P is a subset of Q. Therefore $Q \subset P$ (strict inclusion) is impossible.
3. From the statements above we know that $P \subset Q$ and that $Q \subset P$ is impossible. Therefore, $P \backslash Q=\emptyset$.
4. If we take the properties as defined in point 1 , we have $P \subset Q$. So $Q \backslash P=\{6,7,8,9,10\} \neq \emptyset$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis (*) is sufficient to conclude that p_{i} does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. p_{1} holds. From the hypothesis $(*)$ we know that A_{k} is a subset of each of the following sets $A_{0}, A_{1}, \ldots, A_{k-1}$. Therefore, the intersection $A_{0} \cap A_{1} \cap$ $\cdots \cap A_{k}=A_{k}$.
2. p_{2} holds. It is always true because we can have two possibilities: wether $A_{j}=A_{j+1}$ or by decreasing, since $\forall i \in \mathbb{N}$. A_{i} is finite we reach some point k where $A_{k}=A_{k+1}=\emptyset$.
3. The hypothesis is not sufficient to conclude anything about the truth of p_{3}.
4. p_{4} holds. Since we have a strict inclusion going to infinity the intersection of the sets will be the empty set.
5. p_{5} holds. $\forall i \in \mathbb{N} . A_{i}$ is finite and the intersection of finite sets is finite.
6. p_{6} does not hold. We can take $A_{i}=\mathbb{N}$ and the intersection is not finite.
7. p_{7} holds. The hypothesis is not sufficient to conclude anything because if the sequence is decreasing then the intersection is the empty set, otherwise the intersection is infinite.
