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1 Question

In this exercise, p(z) and ¢(z) will be two unary properties over natural numbers,
and P and @ will denote the sets P = {x € N : p(x) holds} and Q = {z € N :
q(z) holds}. If possible, for each of the cases below find two properties p(x) and
q(z) such that Vz € N. p(z) = ¢(z) and

1. P C Q (strict inclusion);
2. Q C P (strict inclusion);
3. P\Q#10;
4. Q\ P #0.

If for some of the above cases it’s impossible to find such properties, provide a
brief explanation of why is it so.

1.1 Answer

No, it is not possible to find such properties such that Vo € N. p(z) = ¢(«) and
to satisfy the conditions 2) and 3).
2)
QCP=JzaxePAx¢Q
=3z.(p(x) = True A q(z) = False)
=3z.= (p(z) = q())
==V (p(z) = q())

contradiction
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P\Q#0=3zxePArx¢Q

and, following the same reasoning for the condition 2), it is possible to arrive to
a contradiction.

2 Preliminaries

Given an infinite sequence of sets (A;);en, we define ()2, 4; = {4; | i € N} =
{z|VieNzeA}Yand (g A =N{Ai [ ieNAi<k}=AgNAN---NA.

3 Question

Assume (A4;);en to be an infinite sequence of sets of natural numbers, satisfying
N2 Ag2D A 2 A2 Az (%)
For each property p; shown below, state whether
e the hypothesis (x) is sufficient to conclude that p; holds; or
e the hypothesis (x) is sufficient to conclude that p; does not hold; or

e the hypothesis (%) is not sufficient to conclude anything about the truth
of Di-

Justify your answers (briefly).

L opi: Ve N. A, = N5, A

2. po: if Vi € N. A; is finite, then there exists j € N such that A; = A;;
ps: for all 4, if A; is finite, then A; = A;41;
pa: if Vi € N. A; # Ajqq, then (72 A = 0;

ook »

ps: if Vi € N. A; is finite, then ()~ A; is finite;

o

pe: if Vi € N. A; is infinite, then ;2 A; is finite;

7. pr: if Vi € N. 4; is infinite, then (2, A; is infinite.



3.1

Answer

. The hypothesis (*) is sufficient to conclude that pl holds.

According to (*) Ay is contained in every set A;.i > 0 A4 < k and in N.
Therefore every element of Ay, is contained in them and not exist element
of Ay that not exists in the other named sets because, according to (*),
Ay, is contained in them.

The hypothesis (*) is sufficient to conclude that p2 holds.

The sequence of sets of natural number is infinite. But if all A; is finite
it is necessary that 35 € N.A; = A, otherwise, if every set is strictly
contained in the preceding set, the sequence could not be infinite.

The hypothesis (*) is not sufficient to conclude anything about the prop-
erty of p3.

The sequence being infinite, it is necessary that some sets in the sequence
are equal, but not necessarily all of them; so it is possible that for every
set, the following set is strictly contained.

The hypothesis(*) is sufficient to conclude that p4 holds.

If we consider the infinite sequence of strictly contained sets of natural
numbers, every set that we add to the sequence the intersection of the
preceding sets is reduced by at least a natural number and so happens
infinitely times. Thinkink that the resulting intersection could be different
from the empty set, means that a natural number couldn’t be removed
but that is impossible.

The hypothesis (*) is sufficient to conclude that p5 holds.

The intersection of an infinite number of finite sets satisfyng the property
(*) is the smallest of them and, being every set a finite set, the result is
finite.

The hypothesis (*) is not sufficient to conclude anything about the truth
of p6.;

If every set set is N then the intersection is infinite; but it could be also
finite if the sequence would be N D{set of all Prime numbers and 4} 2D {set
of all Prime numbers} and all remaining sets beig = {set of all Prime
Numbers}

The hypothesis (*) is not sufficient to conclude anything about the truth
of p7.;
I could use the same reasoning used in the previous point.
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