Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

For $\mathrm{P}=\{1,3,5,7,9\}$ and $\mathrm{Q}=\{1,3,5\}$

1. $P \subset Q$ (strict inclusion) is true because if $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ then the elements of P are also in Q ;
2. $Q \subset P$ (strict inclusion) is false because if $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ then not all elements of Q are in P ;
3. $P \backslash Q \neq \emptyset$ is false because since $P \subset Q$ if I remove all the elements of Q $P=\emptyset$;
4. $Q \backslash P \neq \emptyset$ is true because since $P \subset Q$ if I remove all elements of $\mathrm{P} Q \neq \emptyset$;

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. The hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{1} holds because $A_{k}=$ $A_{0} \cap A_{1} \cap \cdots \cap A_{k}$ and than for hypothesis (*) $A_{k} \subseteq A_{k-1} \cdots$.
2. The hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{2} holds because if the number of elements of $A_{i}=n$ with $n \in \mathbb{N}$ and $n \lesseqgtr \infty A_{i} \supset A_{i+1} \supset \ldots$ Ј A_{i+n} and when you reach the nth element $A_{i+n}=A_{i+n+1}$ and $A_{i+n}=\emptyset$.
3. The hypothesis $\left(^{*}\right)$ is not sufficient to conclude anything about the truth of p_{3} because if A_{i} has 10 elements A_{i+1} may have 9 elements then $A_{i} \neq A_{i+1}$.
4. The hypothesis $\left({ }^{*}\right)$ is sufficient to conclude that p_{4} doesn't hold because since $\exists j \in \mathbb{N}$ and $j \leq \infty$ such that $A_{j}=\emptyset$ for the hypothesis (${ }^{*}$) $A_{j}=A_{j+1}$.
5. The hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{5} holds because by intersections of finite sets there is a finite set or null.
6. The hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{6} does not hold because since $\forall A_{k}$ is contained in all the A_{j} with $0 \leq j \lesseqgtr k$ and A_{k} is infinite and then $\cap A_{i}$ is infinite.
7. The hypothesis $\left({ }^{*}\right)$ is sufficient to conclude that p_{7} holds because since $\forall A_{k}$ is contained in all the A_{j} with $0 \leq j \lesseqgtr k$ and A_{k} is infinite and then $\cap A_{i}$ is infinite.
