Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset;$
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

We can define $p(x) := 3 \le x \le 5$ and $q(x) := 2 \le x \le 6$. So It easy to see that is verified $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$.

1. $P \subset Q$ True.

 $\forall x \in \mathbb{N}. \ p(x)$ we have that $x \in P \Rightarrow x \in Q$ because it's true also q(x).

2. $Q \subset P$. False.

If p(x) is false then q(x) can be false or true. For example if x = 6 then p(x) is false, but q(x) is true.

3. $P \setminus Q \neq \emptyset$. False.

 $P \subset Q$ means that every element of P is in Q, so for every element of P we can find an element of Q which "eliminate" the element of P.

4. $Q \setminus P \neq \emptyset$. True.

The strict inclusion means that Q has at least one element more than P, so Q can't "lose" all its elements.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_i = \bigcap \{A_i \mid i \in \mathbb{N}\} = \{x \mid \forall i \in \mathbb{N} \ x \in A_i\}$ and $\bigcap_{i=0}^k A_i = \bigcap \{A_i \mid i \in \mathbb{N} \ \land \ i \leq k\} = A_0 \cap A_1 \cap \cdots \cap A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all *i*, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p₇: if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

See the property:

1. True. $\bigcap_{i=0}^{k} A_i = \{x \in \mathbb{N} \mid (x \in A_0) \land (x \in A_1) \land \dots \land (x \in A_k)\}$. For the hp only for $x \in A_k$ this $(x \in A_0) \land (x \in A_1) \land \dots \land (x \in A_k)$ is true, so $\bigcap_{i=0}^{k} A_i = A_k$.

2. True. We can do an example: we have A_0 finite and we can write $\sharp A_0 = n$ and $A_0 := \{1, 2, \ldots n\}$, now for every i + 1 we can remove an element and so $A_1 := \{1, 2, \ldots, n - 1\}$ and so on, but at the end we will have $A_n = \emptyset$ and then for the hp we have to force $\forall j \in \mathbb{N} \mid j \geq n A_j = A_{j+1}$. Of course we can "stop" to remove elements when we want, so the statement is correct because we can always find a *j* that respect it.

3.Nothing. Doing a counterexample: we can choose $A_0 = \{1, \ldots, 100\}$ and $A_1 = \{1, \ldots, 99\}$. Both A_0 and A_1 are finite and $A_1 \subset A_0$, but also we can choose all the sets equal, it respects the hp and also p_3 . We need more informations.

4. False. Doing counterexample we can define $A_0 = \mathbb{N}$ and $A_i = \{x \in \mathbb{N} \mid x \mod 2^i = 0\}$ so if we do the intersection we never obtaind the empty set. In p_4 the information $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$ gives to us the information that the sets are infinite because in the other case we reach a certain j such that $A_z = \emptyset \ z \in \mathbb{N} \ z > j - 1$ and this doesn't respect the hp.

5. True. For our hp we have that the cardinality of $\bigcap_{i=0}^{\infty} A_i$ is equal to the cardinality of the smallest set, in this case the smallest set is finite and then the intersection is finite.

6. False. Doing a counterexample: $\forall i \in \mathbb{N}$. $A_i = \mathbb{N}$ and so $\bigcap_{i=0}^{\infty} A_i = \mathbb{N}$ and it is infinite.

7. True. Intersection is equal to the smallest set, but in this case it is infinite and then the intersection is infinite.