Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

We can define $p(x):=3 \leq x \leq 5$ and $q(x):=2 \leq x \leq 6$. So It easy to see that is verified $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$.

1. $P \subset Q$ True.
$\forall x \in \mathbb{N}$. $p(x)$ we have that $x \in P \Rightarrow x \in Q$ because it's true also $q(x)$.
2. $Q \subset P$. False.

If $p(x)$ is false then $q(x)$ can be false or true. For example if $x=6$ then $p(x)$ is false, but $q(x)$ is true.
3. $P \backslash Q \neq \emptyset$. False.
$P \subset Q$ means that every element of P is in Q, so for every element of P we can find an element of Q which "eliminate" the element of P.
4. $Q \backslash P \neq \emptyset$. True.

The strict inclusion means that Q has at least one element more than P, so Q can't "lose" all its elements.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

See the property:

1. True. $\bigcap_{i=0}^{k} A_{i}=\left\{x \in \mathbb{N} \mid\left(x \in A_{0}\right) \bigwedge\left(x \in A_{1}\right) \bigwedge \ldots \bigwedge\left(x \in A_{k}\right)\right\}$. For the hp only for $x \in A_{k}$ this $\left(x \in A_{0}\right) \bigwedge\left(x \in A_{1}\right) \bigwedge \ldots \bigwedge\left(x \in A_{k}\right)$ is true, so $\bigcap_{i=0}^{k} A_{i}=A_{k}$.
2.True. We can do an example: we have A_{0} finite and we can write $\sharp A_{0}=n$ and $A_{0}:=\{1,2, \ldots n\}$, now for every $i+1$ we can remove an element and so $A_{1}:=\{1,2 \ldots, n-1\}$ and so on, but at the end we will have $A_{n}=\varnothing$ and then
for the hp we have to force $\forall j \in \mathbb{N} \mid j \geq n A_{j}=A_{j+1}$. Of course we can "stop" to remove elements when we want, so the statement is correct because we can always find a j that respect it.
3.Nothing. Doing a counterexample: we can choose $A_{0}=\{1, \ldots 100\}$ and $A_{1}=\{1, \ldots 99\}$. Both A_{0} and A_{1} are finite and $A_{1} \subset A_{0}$, but also we can choose all the sets equal, it respects the hp and also p_{3}. We need more informations.
4.False. Doing counterexample we can define $A_{0}=\mathbb{N}$ and $A_{i}=\left\{x \in \mathbb{N} \mid x \bmod 2^{i}=0\right\}$ so if we do the intersection we never obtaind the empty set. In p_{4} the information $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$ gives to us the information that the sets are infinite because in the other case we reach a certain j such that $A_{z}=\varnothing z \in \mathbb{N} z>j-1$ and this doesn't respect the hp.
5.True. For our hp we have that the cardinality of $\bigcap_{i=0}^{\infty} A_{i}$ is equal to the cardinality of the smallest set, in this case the smallest set is finite and then the intersection is finite.
6.False. Doing a counterexample: $\forall i \in \mathbb{N} . A_{i}=\mathbb{N}$ and so $\bigcap_{i=0}^{\infty} A_{i}=\mathbb{N}$ and it is infinite.
7.True. Intersection is equal to the smallest set, but in this case it is infinite and then the intersection is infinite.
