Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1-4. $P=\{x \mid x \bmod 4=0\}$ that is the set of the numbers divisible by 4 and $Q=\{x \mid x \bmod 2=0\}$ the set of the numbers divisible by 2 . If a number is divisible by 4 so is also divisible by 2 so the property holds. For the property of this two sets also (1) $P \subset Q$ and (4) $Q \backslash P \neq \emptyset$ are verified.

2-3. Is not possible define two properties because Q is stricted included in P so $P \backslash Q \neq \emptyset$ (but not $Q \backslash P \neq \emptyset$) and is possible to find an element that verifies $p(x)$ but not $q(x)$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. p_{1} holds because the set A_{k} is included in all the A_{i} sets, because of the definition above.
2. p_{2} holds. If A_{i} is finite and for the definition $\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq$ $A_{3} \cdots(*)$ the sets are smaller or equal then the previous ones so we have two case: one (equality) $A_{j}=A_{j+1}$ or if it's smaller at some point we will have $A_{j}=A_{j+1}=\emptyset$ because its parent it's finite.
3. p_{3} does not hold because the set A_{i+1} can be smaller and so can not be equal to A_{i}
4. p_{4} does not hold because we can create always different with commons elements because numbers are infinite
5. p_{5} holds because we have the intersection of finite elements that is finite
6. p_{6} does not holds (contrary of point 5)
7. p_{7} holds because intersection of infinite can be infinite
