Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset$;
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1-4. $P = \{x \mid x \bmod 4 = 0\}$ that is the set of the numbers divisible by 4 and $Q = \{x \mid x \bmod 2 = 0\}$ the set of the numbers divisible by 2. If a number is divisible by 4 so is also divisible by 2 so the property holds. For the property of this two sets also (1) $P \subset Q$ and (4) $Q \setminus P \neq \emptyset$ are verified.

2-3. Is not possible define two properties because Q is stricted included in P so $P \setminus Q \neq \emptyset$ (but not $Q \setminus P \neq \emptyset$) and is possible to find an element that verifies p(x) but not q(x)

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty}A_i=\bigcap\{A_i\mid i\in\mathbb{N}\}=\{x\mid\forall i\in\mathbb{N}\ x\in A_i\}$ and $\bigcap_{i=0}^kA_i=\bigcap\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cap A_1\cap\cdots\cap A_k.$

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcap_{i=0}^k A_i$;
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all i, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. p_1 holds because the set A_k is included in all the A_i sets, because of the definition above.
- 2. p_2 holds. If A_i is finite and for the definition $\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$ the sets are smaller or equal then the previous ones so we have two case: one (equality) $A_j = A_{j+1}$ or if it's smaller at some point we will have $A_j = A_{j+1} = \emptyset$ because its parent it's finite.
- 3. p_3 does not hold because the set A_{i+1} can be smaller and so can not be equal to A_i

- 4. p_4 does not hold because we can create always different with commons elements because numbers are infinite
- 5. p_5 holds because we have the intersection of finite elements that is finite
- 6. p_6 does not holds (contrary of point 5)
- 7. p_7 holds because intersection of infinite can be infinite