Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. First of all I prove that 1. is equivalent to 4. and 2. is equivalent to 3 ., so that I will answer only at two questions.
(a) (1. \Rightarrow 4.) $P \subset Q$ means that $\forall x \in P \Rightarrow x \in Q$ and $\exists x \in Q$ such that $x \notin P$. Let's call such a x, for example, x_{0}. By definition $Q \backslash P=\{x \mid x \in Q \wedge x \notin P\}$. By constraction $Q \backslash P \neq \emptyset$ because it contains at least x_{0};
(b) (4. \Rightarrow 1.) $Q \backslash P=\{x \mid x \in Q \wedge x \notin P\} \neq \emptyset$ so $\exists x$ such that $x \in Q$ and $x \notin P$, then $P \subset Q$;
(c) An analogous proof shows that $2 . \Leftrightarrow 3$.
2. Now I give an example of $p(x)$ and $q(x)$ suitable for $1 . \Leftrightarrow 4$. .
(a) Let's define $p(x):=\left(\frac{x+1}{2} \in \mathbb{N}\right)$ and $q(x):=(x-1 \in \mathbb{N})$;
(b) Then I prove that $p(x) \Rightarrow q(x)$. If $p(x)$ holds means that x is odd, then x could be at least 1 , from which it's obvious that $q(x)$ holds too;
(c) Finally I prove 1. $\Leftrightarrow 4$. . In this case, $P=\{x \in \mathbb{N} \mid x \equiv 1(\bmod 2)\}$, the odd naturals, and $Q=\mathbb{N}^{+}=\{n \in \mathbb{N} \mid n>0\} . P \subset Q$ because every odd natural is greater than 0 and, for instance, $2 \in Q$ because $2>0$ but $2 \notin P$ because 2 is even.
3. Finally I prove the non-existence of an example suitable for $2 . \Leftrightarrow 3$. .
(a) Let's take $x_{0} \in \mathbb{N}$ such that $x_{0} \in P$ and $x_{0} \notin Q$. This means that $p\left(x_{0}\right)$ holds and $q\left(x_{0}\right)$ doesn't. But this is a contraddiction to $p\left(x_{0}\right) \Rightarrow q\left(x_{0}\right)$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.
Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N} . A_{i}$ is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. True: For any choice of $n \in \mathbb{N}$ I have that $A_{n+1} \subseteq A_{n}$ so that $A_{n+1} \cap A_{n}=$ A_{n+1}. Then $\bigcap_{i=0}^{k} A_{i}=A_{0} \cap \ldots \cap A_{k}=A_{k}$ since $A_{k} \subseteq \ldots \subseteq A_{0}$.
2. True: Let's choose $i_{0} \in \mathbb{N}$ such that $A_{i_{0}}$ is finite, that is to say $A_{i_{0}}=$ $\left\{n_{1}, \ldots, n_{t}\right\} \subset \mathbb{N}$. Then $A_{i_{0}} \supseteq A_{i_{0}+1} \supseteq A_{i_{0}+2}$ and so on. They are all finite sets so that $\# A_{i_{0}} \geq \# A_{i_{0}+1}$ and so on. If there's a point in which $\# A_{j}=\# A_{j+1}$ I'm done, else I continue restricting the sets untill I arrive at $A_{j}=\left\{n_{j}\right\}$ with $n_{j} \in A_{i_{0}}$. Now I can't continue restricting the sets, so I'm done.
3. Unknown: Let's take $A_{i}=\{1, \ldots, i\}$, which is finite. Then A_{i+1} could be $\{1, \ldots, i-1\}$. It's trivial that $A_{i} \neq A_{i+1}$. On the other hand, if I choose $A_{0}=A_{1}=\ldots=\{0, . ., n\}, p_{3}$ holds.
4. Unknown: If A_{i} are infinite is true. Intuitively, that's because the empty set is the only subset of all sets. This implies that by taking an infinite intersection of a chain of sets, the empty set is the only one which can be included in all the previous ones. But if A_{i} are finite sets, there are some problems. Suppose to take $A_{0}=\{1, \ldots, n\}, A_{1}=\{1, \ldots, n-1\}$ and so on. I will arrive at $A_{n-1}=\{1\}$ and I have to find a proper subset of A_{n}, which has to be the empty set. From now, the only subset of the empty set is the empty set itself, so that starting from n, the following chain holds: $A_{n}=A_{n+1}=\ldots$. This contradicts the hypothesis of p_{4}.
5. True: $\bigcap_{i=0}^{\infty} A_{i}$ is a subset of all the A_{i}, which are finite. There cannot exist an infinite subset of a finite set.
6. Unknown: Let's take $\forall i \in \mathbb{N} . A_{i}=A_{0}$. In this case $\bigcap_{i=0}^{\infty} A_{i}=A_{0}$, which is infinite. Otherwise, if I take only strict subset in the chain I obtain that the intersection is the empty set, as intuitively prooved in 4.
7. Unknown: See 6.
