Year 2013/14-Number 2

September 25, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. In this exercise, $p(x)$ and $q(x)$ will be two unary proprieties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}: q(x)$ holds $\}$. If possible, for each of the cases below find two proprieties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion)
2. $Q \subset P$ (strict inclusion)
3. $P \backslash Q \neq \emptyset$
4. $Q \backslash P \neq \emptyset$

If for some of the above cases it's impossible to find such proprieties, provide a brief explanation of why is it so.

Answer 1.1.

1. Let $p(x)=" \exists z \in \mathbb{N} \cdot x=2 z+1 "$ and $q(x)=" x \in \mathbb{N} "$. Surely, $p(x) \rightarrow q(x)$ because $z \in \mathbb{N} \rightarrow 2 z+1 \in \mathbb{N} \rightarrow x \in \mathbb{N}$. Also the propriety $P \subset Q$ is satisfied: $\forall x \in P, x=2 z+1$, where $z \in \mathbb{N}$, so $x \in \mathbb{N} \rightarrow x \in Q$ but $\forall x \in Q$ such that $x=2 z$, where $z \in \mathbb{N}$, it's true that $x \notin P$ because $x=2 z \in P \rightarrow \exists y \in \mathbb{N}$ such that $2 z=2 y+1 \rightarrow 2(z-y)=1$, where $m=z-y \in \mathbb{N}$, but the following statement " $2 m=1 \wedge m \in \mathbb{N}$ " is false.
2. Using the definition of subsets, we obtain the following result: $Q \subset$ $P \Leftrightarrow(\forall x \in Q \rightarrow x \in P) \leftrightarrow(\forall x .(x \in Q \rightarrow x \in P)) \leftrightarrow(\forall x .(q(x) \rightarrow$ $p(x)$). In order to define $p(x)$ and $q(x)$ such that the propriety " $\forall x \in$
 we cannot define such proprieties.
3. Recalling the previous reasoning, we can define the two proprieties iff $P \subseteq Q$. In that case, $P \backslash Q=\emptyset$.
4. Let $p(x)=" x>40 "$ and $q(x)=" x>30 "$. In that case $p(x) \rightarrow q(x)$ and $Q \backslash P=(30,40] \neq \emptyset$.

Preliminaries 2. Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in\right.$ $\mathbb{N} \wedge i \leq k\}=A_{0} \cap A_{1} \cap \ldots \cap A_{k}$.

Question 3. Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequace of sets of natural numbers, satisfying $\mathbb{N} \supseteq A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \ldots(*)$
For each propriety p_{i} shown below, state whether

- the hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $\left(^{*}\right)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $\left(^{*}\right)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answer (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. $p_{2}:$ if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. $p_{4}:$ if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$ then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. $p_{6}:$ if $\forall i \in \mathbb{N} . A_{i}$ is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. $p_{7}:$ if $\forall i \in \mathbb{N} . A_{i}$ is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

Answer 3.1.

1. p_{1} holds: $\forall x \in A_{k} \rightarrow x \in A_{m}, \forall m \leq k$ such that $m, k \in \mathbb{N}$ because $A_{k} \subseteq A_{m}, \forall m \leq k ;$
2. p_{2} holds: suppose that $\forall i \in \mathbb{N} . A_{i}$ is finite and suppose that $\nexists j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$. In that case $\forall j \in \mathbb{N} A_{j} \subset A_{j+1} \rightarrow \exists x_{j} \in A_{j} \backslash A_{j+1}$. The set $P=\left\{x_{j} \mid j \in \mathbb{N}\right\}$ is a subset of $\bigcup_{i=0}^{\infty} A_{i}=A_{0}$. There's a contraddiction because P is an infinite set (it has the power of the set of natural numbers), while A_{0} is finite for hyphothesis.
3. p_{3} could not hold: suppose that there are many strict inclusions, for example $A_{0}=\{0,1,2 \ldots 50\}, A_{1}=\{1,2 \ldots .50\}$ and $A_{i}=\{50\} \forall i>50$. For all i, A_{i} is finite, but for example $A_{0} \neq A_{1}$. The hypothesis is not sufficient to conclude anything, because we have to make more assumptions to prove something.
4. p_{4} could not hold: $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1} \rightarrow \forall i \in \mathbb{N} . A_{i} \subset A_{i+1}$. If we assume that $\forall i \in \mathbb{N} A_{i} \neq \emptyset$, it follows that the intersection is not empty. The hypothesis is not sufficient to conclude anything, because we have to make more assumptions to prove something.
5. p_{5} holds: $\forall j \in \mathbb{N}, \bigcap_{i=0}^{\infty} A_{i} \subseteq A_{j} \rightarrow\left(\forall j \in \mathbb{N} .\left(\forall x \in \bigcap_{i=0}^{\infty} A_{i} \rightarrow x \in A_{j}\right)\right)$. The intersection is finite because every set A_{j} is finite.
6. p_{6} does not hold: for example, suppose that $\forall i \in \mathbb{N}, A_{i}=A_{i+1}$. Then $A_{0}=\bigcap_{i=0}^{\infty} A_{i} . A_{0}$ is infinite, so the intersection is infinite too. We can conclude this result thanks to the following proof.
7. p_{7} holds: we proved that p_{1} holds. It follows that $A_{\infty}=\bigcap_{i=0}^{\infty} A_{i}$. Suppose that $\forall i \in \mathbb{N}, A_{i}$ is infinite. So A_{∞} is infinite too. It follows that the intersection above is also infinite.
