Computability Assignment Year 2013/14-Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

$\mathrm{p}(\mathrm{x}, \mathrm{y})=\left\{\mathrm{T}\right.$ if $\frac{x}{y}$ is defined, F otherwise $\}$
For all $x \in \mathbb{N}$, we can always find $y \in \mathbb{N}$ such that x / y is defined. When x / y is defined it returns True. But for some $y \in \mathbb{N}$ we may not be able to find $x \in \mathbb{N}$ such that $\frac{x}{y}$ is defined. For exam when $\mathrm{y}=0$, we can not find any x such that $\frac{x}{y}$ is defined. In such case the property returns F.

