Computability Assignment Year 2013/14-Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Write your answer here.
The binary property is "equal to".
For the first requisite, $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y), \forall x \in \mathbb{N} . \exists y \in \mathbb{N} . x=y$. Each of the members x belonging to the domain \mathbb{N}, it is true that there is a member in the range which equals to each of the corresponding members in the domain. For example, taking x in the domain to be 1 , there exists a corresponding y in the range which has a value of 1 , and so on for all the members x in the set of natural numbers.

At the same time, itisfalsethat $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$ implies $\forall y \in \mathbb{N} . \exists x \in$ $\mathbb{N} . \operatorname{Not} p(x, y)$. It is true that for all members y of the range, there exists a corresponding member x in the domain for which the property $p(x, y)$ does not exist. For example, taking y in the range to be 4 , there exists an x in the domain such as 1 which is not equal to 4 in the range. This happens for all members in the range belonging to the set of natural numbers.

