Computability Assignment Year 2013/14 - Number 1

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property p(x,y) over natural numbers that satisfies both the requisites:

- 1. $\forall x \in \mathbb{N}. \exists y \in \mathbb{N}. p(x, y)$ and
- 2. it is false that $\forall y \in \mathbb{N}.\exists x \in \mathbb{N}.p(x,y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Given $x \in \mathbb{N}$ and $y \in \mathbb{N}$, p(x, y) can be defined as $y = x^2$.

- 1. The first requisite is proved as $\forall x \in \mathbb{N}$ we can find $y = x^2 \in \mathbb{N}$.
- 2. The second requisite can be proved by showing an example. Take $y = 10 \in \mathbb{N}$ then the property p(x, y) is not true as there is no natural number x such that $x^2 = 10$.