Computability Assignment Year 2013/14-Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

definition $p(x, y):=(y=x)^{3}$
Proof

1. For any x , it's cube will always be a Natural Number $\left(x^{3}=x * x * x\right.$ and $x * x=\sum_{k=1}^{x} x$, so starting from a Natural Number it will be always a sum of Natural Numbers).
2. We need a counter-example, $y=3 \in \mathbb{N}$, but $x=\sqrt[3]{3} \notin \mathbb{N}$
