Computability Assignment Year 2013/14 - Number 1

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property p(x, y) over natural numbers that satisfies both the requisites:

- 1. $\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : p(x, y)$ and
- 2. *it is false that* $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Let's define p(x, y) = x < y, in that case the both the requisites are satisfied:

- 1. For x = 0 the formula in 1 is satisfied because $\exists y \in \mathbb{N}.p(0, y)$ holds (p(0, y)) is satisfied $\forall y \in \mathbb{N} \setminus \{0\}$. For the general case indeed taking x = n for a generic $n \in \mathbb{N}$ the property holds for y = n + 1 so the property 1 is satisfied.
- 2. For prooving that 2 holds we need to prove that $\forall y \in \mathbb{N}. \exists x \in \mathbb{N}. p(x, y)$ is false. In order to do that is enought to find an $y \in \mathbb{N}$ such that $\neg \exists x \in \mathbb{N}. p(x, y)$. For y = 0 in fact doesn't exist an $x \in \mathbb{N}$ such that x < 0 because $\mathbb{N} = \{0, 1, 2, ...\}$. So $\forall y \in \mathbb{N}. \exists x \in \mathbb{N}. p(x, y)$ is false and the the second property holds.