Computability Assignment Year 2013/14-Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

A property satisfying the above conditions $\operatorname{isp}(x, y):=(y=2 x)$. (1) is satisfied because if x belongs to \mathbb{N}, we can always compute 2 x , which will be a natural number since \mathbb{N} is closed under multiplication. To satisfy (2) we just need to supply a counterexample to the proposition $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$, and as we can see it does not work with $\mathrm{y}=3$, or any odd number, for that matter (since x should be a natural number, and not, for example, a rational one, and y should be written as the product of x and 2 , thus $\mathrm{y} \% 2=0$).

