Year 2013/14 - Number 1

September 20, 2013

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

Question 1. Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.
Answer 2. We define $p(x, y)=\{(x, y) \in \mathbb{N} \mid x+y>50 \wedge x<y\}$. Clearly, $\forall x \in \mathbb{N} . \exists y \in \mathbb{N}$ such that $x<y$ (for example $y=x+1$). We choose a number $y \in\{z \in \mathbb{N} \mid z>x\}$ such that $x+y>50$ (for example $y=x+51$). We prove the rightness of the second point with a Reductio ad Absurdum. Let y be a number less than 50 , for example $y=2$. In this case, $\nexists x \in \mathbb{N}$ such that $x<y \wedge x+y>50$.
document

