Computability Assignment Year 2013/14 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Define a binary property $p(x, y)$ over natural numbers that satisfies both the requisites:

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$ and
2. it is false that $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Write your answer here.

$$
p(x, y):=\left(y=x^{2}\right)
$$

1.1.1 Proof

1. For any x it is always possible to compute its square, hence it always exists $y \in \mathbb{N}$.
2. For a given y it is not always possible to compute its square root in \mathbb{N}. e.g. for $y=3$ there is no solution in \mathbb{N}
