Computability Assignment Year 2012/13 - Number 11

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

Note

Remember that undefined $\ngtr x$ for any natural x.

1 Question

Consider the set

$$
A=\left\{n \mid \forall x \in \mathbb{N} . \phi_{n}(x)>x\right\}
$$

Prove that $\mathrm{K} \leq_{m} A$.

1.1 Answer

We write

$$
h(n)=\#\left(\lambda x \cdot\left|\phi_{n}(n)\right|+x+1\right)
$$

We see that $h \in \mathcal{R}$ total (RZ: ok, in an exam add more justification). Then we show it is a reduction from K to A.

- if $n \in \mathrm{~K}, \phi_{n}(n)$ is defined, $\left|\phi_{n}(n)\right| \geqslant 0$, thus $\forall x . \phi_{h(n)}(x) \geqslant x+1>x$, i.e. $h(n) \in A$
- if $n \notin \mathrm{~K}, \phi_{n}(n)$ is undefined, $\phi_{h(n)}(x)$ is also undefined for any x, thus $h(n) \notin A$.

Thus $\mathrm{K} \leqslant{ }_{m} A$.

2 Question

Prove that $\mathrm{K} \leq_{m} A$, with the above A.

2.1 Answer

We write

$$
h(n)=\#\left(\lambda x \cdot\left\{\begin{array}{ll}
\text { undefined } & \text { if } \phi_{n}(n) \text { stops within } x \text { steps } \\
x+1 & \text { o.w. }
\end{array}\right)\right.
$$

Such h is in \mathcal{R} total. We show h reduces $\overline{\mathrm{K}}$ to A.

- if $n \in \overline{\mathrm{~K}}, \phi_{n}(n)$ is undefined, thus it never stops, $\forall x . \phi_{h(n)}(x)=x+1>x$, i.e. $h(n) \in A$
- if $n \notin \overline{\mathrm{~K}}, \phi_{n}(n)$ halts in some k steps,

$$
\phi_{h(n)}(x)= \begin{cases}\text { undefined } & k \leqslant x \\ x+1 & \text { o.w }\end{cases}
$$

$h(n) \notin A$, since some x are undefined.

3 Question

Consider the set

$$
B=\left\{\operatorname{pair}(n, m) \mid \phi_{n}(0)=\phi_{m}(0)\right\}
$$

Prove that $\overline{\mathrm{K}} \leq_{m} B$.

3.1 Answer

Let's try $\mathrm{K} \leqslant_{m} \bar{B}$, where

$$
\bar{B}=\left\{\operatorname{pair}(n, m) \mid \phi_{n}(0) \neq \phi_{m}(0)\right\}
$$

We define

$$
\begin{array}{r}
C=\left\{f(n) \mid \forall n \cdot f(n)=\#\left(\lambda x \cdot \phi_{n}(n)\right) \wedge \operatorname{dom}(f)=\mathbb{N}\right\} \\
D=\left\{g(n) \mid \forall n \cdot g(n)=\#\left(\lambda x \cdot \phi_{n}(n)+1\right) \wedge \operatorname{dom}(g)=\mathbb{N}\right\}
\end{array}
$$

(RZ: the notation above seems to be more complex than needed. It looks equivalent to

$$
\begin{array}{r}
C=\left\{\#\left(\lambda x \cdot \phi_{n}(n)\right) \mid n \in \mathbb{N}\right\} \\
D=\left\{\#\left(\lambda x \cdot \phi_{n}(n)+1\right) \mid n \in \mathbb{N}\right\}
\end{array}
$$

Isn't it simpler to avoid defining C, D and directly define

$$
\begin{aligned}
f(n) & =\#\left(\lambda x \cdot \phi_{n}(n)\right) \\
g(n) & =\#\left(\lambda x \cdot \phi_{n}(n)+1\right)
\end{aligned}
$$

?)
Suppose we can build $f: \mathrm{K} \rightarrow C, g: \mathrm{K} \rightarrow D$, where $f, g \in \mathcal{R}$, then $h(n)=\operatorname{pair}(f(n), g(n)) \in \mathcal{R}$, pair is an arithmetic operation $(\in \mathcal{R})$, and h is a reduction from K to \bar{B}. Then according to the negation lemma, $\overline{\mathrm{K}} \leqslant_{m} B$.

We show f, g are the reductions from K to C, D respectively.

- For f, take the definition in $C, n \in \mathrm{~K} \Rightarrow \forall x . \phi_{f(n)}(x)=\phi_{n}(n) \Rightarrow f(n) \in C$, o.w. $n \notin \mathrm{~K} \Rightarrow \forall x . \phi_{f(n)}(x)$ is undefined, but $\operatorname{dom}(f)=\mathbb{N}$, thus $f(n) \notin C$
- For g, take the definition in $D, n \in \mathrm{~K} \Rightarrow \forall x \cdot \phi_{g(n)}(x)=\phi_{n}(n)+1 \Rightarrow$ $g(n) \in D$, o.w. due to the same reason, $g(n) \notin D$.

They are indeed the needed reductions. Also

- $n \in \mathrm{~K} \cdot \phi_{f(n)}(0)=\phi_{n}(n) \neq \phi_{n}(n)+1=\phi_{g(n)}(0)$, and $\operatorname{pair}(f(n), g(n)) \in \bar{B}$
- $n \notin \mathrm{~K} \Rightarrow \phi_{f(n)}, \phi_{g(n)}$ undefined $\Rightarrow h(n) \notin \bar{B}$

So h is indeed the reduction. Hence proven.

