Computability Assignment Year 2012/13 - Number 10

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the set

$$
A=\left\{n \mid \phi_{n}(5+n)=7\right\}
$$

is $\mathcal{R E}$.

1.1 Answer

(Answered in previous uploaded file)

2 Question

Prove that the set A defined above is not recursive, following the sketch below:

1. Prove that $g(n, x)=7 \cdot \tilde{\chi}_{K}(n)$ is a recursive partial function.
2. Prove that $f(n)=\#\left(\lambda x .\left\{\begin{array}{ll}7 & \text { if } n \in \mathrm{~K} \\ \text { undefined } & \text { otherwise }\end{array}\right)\right.$ is a recursive total function.
3. Prove that $\chi_{\mathrm{K}}(n)=\chi_{A}(f(n))$ for all n. (If $n \in \mathrm{~K}$ then ... If $n \notin \mathrm{~K}$ then ...)
4. Prove that is A were recursive, then the set K would be recursive as well.

5 . Conclude that A can not be recursive.

2.1 Answer

1. The set $K \in \mathcal{R E} \backslash \mathcal{R}$, hence its characteristics funtion $\tilde{\chi}_{K}$ is a recursive partial function. The composition of this function with the product (recursive total function) returns a recursive partial function. Hence $g(n, x)$ is a recursive partial function.
2. If $n \in \mathcal{K}$ then $f(n)=\#(\lambda x .7)$, since $(\lambda x .7) \in \mathcal{R}$ there exists an index i such that $\varphi_{i}=(\lambda x .7) \wedge i=\#(\lambda x .7)$, hence $f(n)$ is defined. If $n \notin \mathcal{K}$ then $f(n)=\#(\lambda x . \uparrow)$, since $(\lambda x . \uparrow) \in \mathcal{R}$ there exists an index j such that $\varphi_{j}=(\lambda x . \uparrow$) $\wedge j=\#(\lambda x . \uparrow)$, hence $f(n)$ is defined. (RZ: not a good reasoning. Written like this, it seems that f is implemented as "if $n \in \mathrm{~K}$ then return i else return j " which is wrong because K is not recursive. It is important here to use the smn theorem and check that the body $b(n, x)=\left\{\begin{array}{ll}7 & \text { if } n \in \mathrm{~K} \\ \text { undefined } & \text { otherwise }\end{array}\right.$ is recursive partial, hence h is recrusive total (and injective)) As a consequence $\forall n . f(n) \downarrow$, i.e. f is a total recursive function.
3.

$n \in \mathcal{K} \Longrightarrow \varphi_{n}(n) \downarrow \wedge \mathcal{X}_{\mathcal{K}}(n)=1$
$(n \in \mathcal{K} \Longrightarrow f(n)=\#(\lambda x .7)) \wedge\left((\lambda x .7) \in \mathcal{R} \Longrightarrow \exists i . \varphi_{i}=(\lambda x .7)\right) \Longrightarrow$ $\varphi_{i}(5+i)=7 \wedge \mathcal{X}_{A}(n)=\mathcal{X}_{A}(i)=1$
$n \notin \mathcal{K} \Longrightarrow \varphi_{n}(n) \uparrow \wedge \mathcal{X}_{\mathcal{K}}(n) \uparrow$
$(n \notin \mathcal{K} \Longrightarrow f(n)=\#(\lambda x . \uparrow)) \wedge\left((\lambda x . \uparrow) \in \mathcal{R} \Longrightarrow \exists j \cdot \varphi_{j}=(\lambda x . \uparrow)\right) \Longrightarrow$ $\varphi_{j}(5+j) \uparrow \wedge \mathcal{X}_{A}(n)=\mathcal{X}_{A}(j) \uparrow$

Hence $\chi_{K}(n)=\chi_{A}(f(n))$.
(RZ: why don't you write $\varphi_{f(n)}(x)=\ldots$? It's not completely clear that i and j stand for $f(n)$ in these two cases)
4. Let's suppose by contraddiction that A is recursive, and consider the following function:

$$
\psi(x, y)=\left\{\begin{array}{ll}
7 & x \in K \\
\uparrow & \text { o.w. }
\end{array} \text {, since } K \in \mathcal{R E}\right. \text { the guard check is a partial recursive }
$$

function (RZ: it's not a function, it's a property/predicate. and it is not even recursive! It is only RE), 1 is recursive (RZ : why 1 ?) and \uparrow is recursive (RZ : this is not enough. When the guard is only RE , to apply the "if-then-else" lemma you need this to be exactly "undef" - just being recursive is not enough (unless the guard is recursive)) ψ is recursive as well.

Then, by s -m-n theorem there exists a recursive (total) function g s.t. $\psi(x, y)=\varphi_{g(x)}(y)$. Then we have:
(RZ: your g was meant to be the f above (not an error, but just a remark))
$x \in K \Longrightarrow \psi(x, y)=\varphi_{g(x)}(y)=7 \Longrightarrow \forall y \in \mathbb{N} \cdot \varphi_{g(x)}(y)=7 \Longrightarrow \varphi_{g(x)}(5+$ $g(x))=7 \Longrightarrow g(x) \in A$
$x \notin K \Longrightarrow \psi(x, y)=\varphi_{g(x)}(y) \uparrow \Longrightarrow \forall y \in \mathbb{N} \cdot \varphi_{g(x)}(y) \uparrow \Longrightarrow \varphi_{g(x)}(5+$ $g(x)) \uparrow \Longrightarrow g(x) \notin A$

So we obtained that $K \preceq A$, but $A \in \mathcal{R}$ for hypothesis therefore $K \in \mathcal{R}$.
5. However we know that $K \notin \mathcal{R}$, therefore $A \notin \mathcal{R}$ as well.

3 Question

Prove whether the set \bar{A} is $\mathcal{R E}$, with A as defined above.

3.1 Answer

(Answered in previously uploaded file)
V'GER

