Computability Assignment Year 2012/13 - Number 10

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the set

$$A = \{n \mid \phi_n(5+n) = 7\}$$

is \mathcal{RE} .

1.1 Answer

Let's write $\tilde{\chi}_A$.

$$\tilde{\chi}_A(n) = \begin{cases} 1 & \text{if } \phi_n(5+n) = 7\\ \text{undefined} & \text{o.w.} \end{cases}$$

Each part of $\tilde{\chi}_A$ is recursive (RZ: no, the guard is \mathcal{RE} , not recursive), thus $\tilde{\chi}_A \in \mathcal{R}$. We show it does work. If $n \in A$, then $\phi_n(5+n) = 7$, it follows $\tilde{\chi}_A(n) = 1$, o.w. $\phi_n(5+n)$ is either not 7 or undefined, we let it be undefined in this case.

2 Question

Prove that the set A defined above is **not** recursive, following the sketch below:

- 1. Prove that $g(n, x) = 7 \cdot \tilde{\chi}_{\mathsf{K}}(n)$ is a recursive partial function.
- 2. Prove that $f(n) = \# \left(\lambda x. \begin{cases} 7 & \text{if } n \in \mathsf{K} \\ \text{undefined} & \text{otherwise} \end{cases} \right)$ is a recursive total function.

- 3. Prove that $\chi_{\mathsf{K}}(n) = \chi_A(f(n))$ for all n. (If $n \in \mathsf{K}$ then ... If $n \notin \mathsf{K}$ then ...)
- 4. Prove that if A were recursive, then the set K would be recursive as well.
- 5. Conclude that A can not be recursive.

2.1 Answer

1. We expand g(n, x).

$$g(n,x) = \begin{cases} 7 & \text{if } n \in \mathsf{K} \\ \text{undefined} & \text{o.w.} \end{cases}$$

 $\mathsf{K} \in \mathcal{RE} \Rightarrow \tilde{\chi}_{\mathsf{K}} \in \mathcal{R}$. Each part of g(n, x) is recursive (RZ: no, the guard is \mathcal{RE} , not recursive), thus $g(n, x) \in \mathcal{R}$.

- 2. Take any *i* s.t. $\varphi_i = g$, we observe that $f(n) = s_1^1(i, n)$, due to *s*-*m*-*n* theorem, such an *f* is total and recursive.
- 3. 1) If n ∈ K, i.e. χ̃_K(n) = 1, then χ̃_A(f(n)) = χ̃_A(#(λx.7)), and #(λx.7) is the (RZ: an) index of the constant program (RZ: function) 7 on any input, we see that #(λx.7) ∈ A. Thus χ̃_A(f(n)) = 1.
 2) If n ∉ K, then χ̃_A(f(n)) = χ_A(#(λx.Ω)), we have the index of a program never halts, apparently #(λx.Ω) ∉ A, thus χ̃_A(f(n)) = undefined = χ̃_K(n).
- 4. Suppose A is recursive, then $\chi_A(n) = 0$ if $n \notin A$ (RZ: irrelevant?), we can build $\chi_{\mathsf{K}}(n) = \chi_A(f(n)) \in \mathcal{R}$, concluding $\mathsf{K} \in \mathcal{R}$. This is not true.
- 5. By contradiction, use 4.

3 Question

Prove whether the set \overline{A} is \mathcal{RE} , with A as defined above.

3.1 Answer

It follows $A \notin \mathcal{R}$, that is $\bar{A} \notin \mathcal{RE}$, otherwise, suppose $\bar{A} \in \mathcal{RE}$, we already have $A \in \mathcal{RE}$, then $A \in \mathcal{R}$ (by parallelly running the semi-characteristic functions of A and \bar{A} , we can get a characteristic function for A). This is a contradiction.