# Computability Assignment Year 2012/13 - Number 10 

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

## 1 Question

Prove that the set

$$
A=\left\{n \mid \phi_{n}(5+n)=7\right\}
$$

is $\mathcal{R E}$.

### 1.1 Answer

Set $A$ has a semi-verifier (RZ: semi-characteristic function)
$S_{A}(x)= \begin{cases}1 & \text { if } \varphi_{x}(5+x)=7 \\ \uparrow & \text { else }\end{cases}$
which is obviously recursive. (RZ: this actually relies on $A$ being $\mathcal{R E}$ )
Hence $A \in \mathcal{R E}$, and this means that $A \preceq K$. (Trivia: $K$ is complete, i.e. $\forall S \in \mathcal{R E} . S \preceq K)$

Let's verify if $K \preceq A$. Define a
$\psi(x, y)= \begin{cases}7 & \varphi_{x}(x) \downarrow \quad(\text { hence } x \in K) \\ \uparrow & \text { o.w. }\end{cases}$
which is once again obviusly recursive, then by $\mathrm{S}-\mathrm{M}-\mathrm{N}$ theorem there exists a recursive (total) function $g$ s.t. $\psi(x, y)=\varphi_{g(x)}(y)$.

But then we have that:
$x \in K \Longleftrightarrow \varphi_{x}(x) \downarrow \Longrightarrow \forall y \cdot \varphi_{g(x)}(y)=7 \Longrightarrow \varphi_{g(x)}(5+g(x))=7 \Longrightarrow g(x) \in$ A
$x \notin K \Longleftrightarrow \varphi_{x}(x) \uparrow \Longrightarrow \forall y \cdot \varphi_{g(x)}(y) \uparrow \Longrightarrow \varphi_{g(x)}(5+g(x)) \uparrow \Longrightarrow g(x) \notin A$

Since we have found that $K \preceq A$, by $A \in \mathcal{R E} \wedge A \preceq K \wedge K \preceq A$ we conclude that $A$ is creative and complete. (info: Myhill Thm, various lemmas)
(Answer 3.1) Since we have that $K \preceq A \Longleftrightarrow \bar{K} \preceq \bar{A}$ and the property $B$ productive $\wedge B \preceq A \Longrightarrow A$ productive, we get that $\bar{A}=\left\{n \mid \varphi_{n}(5+n) \neq 7\right\}$ is productive. (i.e. $\bar{A} \notin \mathcal{R E}$ ).

Note:
"Obviously recursive" means - for example in the first case - "Take program with Goedel index $x$ and run it over input $5+x$. If it halts and it outputs 7, return 1. If it halts but it doesn't output 7, loop forever. Otherwise just wait forever for program with index $x$ to terminate". One could easily provide pseudo-code for this program, but IMHO is unnecessary.
(RZ: ok, pseudo-code is not needed, but you have to provide some description as in the lines above - just writing "obvious" will not convince me at an exam)

## 2 Question

Prove that the set $A$ defined above is not recursive, following the sketch below:

1. Prove that $g(n, x)=7 \cdot \tilde{\chi}_{\mathrm{K}}(n)$ is a recursive partial function.
2. Prove that $f(n)=\#\left(\lambda x .\left\{\begin{array}{ll}7 & \text { if } n \in \mathrm{~K} \\ \text { undefined } & \text { otherwise }\end{array}\right)\right.$ is a recursive total function.
3. Prove that $\chi_{\mathrm{K}}(n)=\chi_{A}(f(n))$ for all $n$. (If $n \in \mathrm{~K}$ then $\ldots$. If $n \notin \mathrm{~K}$ then ...)
4. Prove that is $A$ were recursive, then the set K would be recursive as well.
5. Conclude that $A$ can not be recursive.

### 2.1 Answer

(Will be uploaded by the end of the week in a new file)

## 3 Question

Prove whether the set $\bar{A}$ is $\mathcal{R E}$, with $A$ as defined above.

### 3.1 Answer

See answer 1.1

