Computability Assignment Year 2012/13-Number 9

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Assume that f is a recursive partial function satisfying the following property:

$$
\forall n, m \in \mathbb{N} . f\left(2^{n} 3^{m}\right)= \begin{cases}m+1 & \text { if } \phi_{n}(m)=0 \\ 0 & \text { otherwise }\end{cases}
$$

(Note that the above makes no guarantees on e.g. what $f(7)$ actually is).
Prove that:

1. The set $A=\left\{n \mid \phi_{n}(5 \cdot n)=0\right\}$ is recursive.
2. (Harder, feel free to skip it)

The set $B=\left\{n \mid \phi_{n}(2)=5\right\}$ is recursive.
(Note: actually f is a non recursive function, and A, B are non recursive sets. Still, I'm interested in how one proves the above portion of a reduction argument.)

1.1 Answer

1. Since for all $n, m \in \mathbb{N}$ the property is satisfied, we pick $m=5 n$. Thus we can write

$$
f\left(2^{n} 3^{5 n}\right)= \begin{cases}5 n+1 & \text { if } \phi_{n}(5 n)=0 \\ 0 & \text { otherwise }\end{cases}
$$

We define a set $M=\{5 n+1 \mid \forall n \in \mathbb{N}\}$, it follows that $M \in \mathcal{R}\left(\chi_{M}(n)=\right.$ if $(n \bmod 5=1)$ then 1 else 0$)$. We use χ_{M} to build the result for A. That is, $\chi_{A}(n)=\chi_{M}\left(f\left(2^{n} 3^{5 n}\right)\right), \forall n \in \mathbb{N}$, i.e. assuming the hyphothesis, $A \in \mathcal{R}$.

We show that χ_{A} does work. 1) If $n \in A$, we have $\phi_{n}(5 n)=0$, thus $f\left(2^{n} 3^{5 n}\right)=5 n+1, \chi_{M}(5 n+1)=1$. 2) If $n \notin A$, we have $\phi_{n}(5 n) \neq 0$, thus $f\left(2^{n} 3^{5 n}\right)=0, \chi_{M}(0)=0$.
(RZ: OK, $M=\mathbb{N} \backslash\{0\}$ could have been easier.)
2. Following the above spirit, let's write

$$
f\left(2^{n} 3^{2}\right)= \begin{cases}3 & \text { if } \phi_{n}(2)=0 \\ 0 & \text { otherwise }\end{cases}
$$

We first build the result for $C=\left\{n \mid \phi_{n}(2)=0\right\}$. i.e., $\chi_{3}\left(f\left(2^{n} 3^{2}\right)\right)=$ $\chi_{C}(n)$, where χ_{3} is the characteristic function for the constant 3 . One can verify χ_{C} does work following the above proof on χ_{A}. Now we utilize χ_{C} to obtain χ_{B}. Then, we build a bijection (RZ: ??) $\left.t: B \leftrightarrow C, 1\right) g(n)(x)=$ $\phi_{n}(x)+5, \forall x \in \mathbb{N}, \forall n \in C$, we write $g(n)(x)=\phi_{n^{\prime}}(x)$ (renaming) (RZ: I can't see what you are doing). Thus, $B=\left\{n^{\prime} \mid \phi_{n^{\prime}}(x)=g(n)(x), n \in C\right\}$. In the same style, we write 2) $h\left(n^{\prime}\right)(x)=\phi_{n^{\prime}}(x)-5, \forall x \in \mathbb{N}, \forall n^{\prime} \in B$, we write $h\left(n^{\prime}\right)(x)=\phi_{n}(x)$, thus $C=\left\{n \mid \phi_{n}(x)=h\left(n^{\prime}\right)(x), n^{\prime} \in B\right\}$. Finally, $\chi_{B}(n)=\chi_{C}(t(n))$.
We show that χ_{B} works. 1) If $n \in B$, then $t(n) \in C, \chi_{C}(t(n))=1$. 2) If $n \notin B$, then $t(n) \notin C$, thus $\chi_{C}(t(n))=0$.

