Computability Assignment Year 2012/13 - Number 9

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Assume that f is a recursive partial function satisfying the following property:

$$\forall n, m \in \mathbb{N}. \ f(2^n 3^m) = \begin{cases} m+1 & \text{if } \phi_n(m) = 0\\ 0 & \text{otherwise} \end{cases}$$

(Note that the above makes no guarantees on e.g. what f(7) actually is). Prove that:

- 1. The set $A = \{n \mid \phi_n(5 \cdot n) = 0\}$ is recursive.
- 2. (Harder, feel free to skip it) The set $B = \{n \mid \phi_n(2) = 5\}$ is recursive.

(Note: actually f is a non recursive function, and A, B are non recursive sets. Still, I'm interested in how one proves the above portion of a reduction argument.)

1.1 Answer

1. Since for all $n, m \in \mathbb{N}$ the property is satisfied, we pick m = 5n. Thus we can write

$$f(2^n 3^{5n}) = \begin{cases} 5n+1 & \text{if } \phi_n(5n) = 0\\ 0 & \text{otherwise} \end{cases}$$

We define a set $M = \{5n + 1 | \forall n \in \mathbb{N}\}$, it follows that $M \in \mathcal{R}$ $(\chi_M(n) =$ if $(n \mod 5 = 1)$ then 1 else 0). We use χ_M to build the result for A. That is, $\chi_A(n) = \chi_M(f(2^n 3^{5n})), \forall n \in \mathbb{N}$, i.e. assuming the hyphothesis, $A \in \mathcal{R}$.

We show that χ_A does work. 1) If $n \in A$, we have $\phi_n(5n) = 0$, thus $f(2^n 3^{5n}) = 5n + 1$, $\chi_M(5n + 1) = 1$. 2) If $n \notin A$, we have $\phi_n(5n) \neq 0$, thus $f(2^n 3^{5n}) = 0$, $\chi_M(0) = 0$. (RZ: OK, $M = \mathbb{N} \setminus \{0\}$ could have been easier.)

2. Following the above spirit, let's write

$$f(2^n 3^2) = \begin{cases} 3 & \text{if } \phi_n(2) = 0\\ 0 & \text{otherwise} \end{cases}$$

We first build the result for $C = \{n \mid \phi_n(2) = 0\}$. i.e., $\chi_3(f(2^n 3^2)) = \chi_C(n)$, where χ_3 is the characteristic function for the constant 3. One can verify χ_C does work following the above proof on χ_A . Now we utilize χ_C to obtain χ_B . Then, we build a bijection (RZ: ??) $t: B \leftrightarrow C$, 1) $g(n)(x) = \phi_n(x) + 5$, $\forall x \in \mathbb{N}$, $\forall n \in C$, we write $g(n)(x) = \phi_{n'}(x)$ (renaming) (RZ: I can't see what you are doing). Thus, $B = \{n' \mid \phi_{n'}(x) = g(n)(x), n \in C\}$. In the same style, we write 2) $h(n')(x) = \phi_{n'}(x) - 5$, $\forall x \in \mathbb{N}$, $\forall n' \in B$, we write $h(n')(x) = \phi_n(x)$, thus $C = \{n \mid \phi_n(x) = h(n')(x), n' \in B\}$. Finally, $\chi_B(n) = \chi_C(t(n))$.

We show that χ_B works. 1) If $n \in B$, then $t(n) \in C$, $\chi_C(t(n)) = 1$. 2) If $n \notin B$, then $t(n) \notin C$, thus $\chi_C(t(n)) = 0$.