Computability Assignment Year 2012/13-Number 9

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Assume that f is a recursive partial function satisfying the following property:

$$
\forall n, m \in \mathbb{N} . f\left(2^{n} 3^{m}\right)= \begin{cases}m+1 & \text { if } \phi_{n}(m)=0 \\ 0 & \text { otherwise }\end{cases}
$$

(Note that the above makes no guarantees on e.g. what $f(7)$ actually is). Prove that:

1. The set $A=\left\{n \mid \phi_{n}(5 \cdot n)=0\right\}$ is recursive.
2. (Harder, feel free to skip it)

The set $B=\left\{n \mid \phi_{n}(2)=5\right\}$ is recursive.
(Note: actually f is a non recursive function, and A, B are non recursive sets. Still, I'm interested in how one proves the above portion of a reduction argument.)

1.1 Answer

1.

We shall define a verifier v_{A} for A :
$v_{A}(x)= \begin{cases}1 & \text { if } f\left(2^{x} 3^{5 x}\right)=5 x+1 \\ 0 & \text { o.w. }\end{cases}$
(RZ: don't confuse a characteristic function with a verifier (which is a program implementing the char.function))

The verifier of A is recursive under the assumption of f being recursive (which is not).
(RZ: ok, note that $f\left(2^{n} 3^{5 n}\right)=5 x+1$ is recursive because f is recursive and $f\left(2^{n} 3^{m}\right)$ is defined. If the latter could be undefined, then that predicate would not be recursive.)

Let's check that it's also properly defined:
$v_{A}(x)=1 \Longleftrightarrow f\left(2^{x} 3^{5 x}\right)=5 x+1 \Longleftrightarrow \varphi_{x}(5 x)=0 \Longleftrightarrow x \in A$
$v_{A}(x)=0 \Longleftrightarrow f\left(2^{x} 3^{5 x}\right)=0 \Longleftrightarrow \varphi_{x}(5 x) \neq 0 \Longleftrightarrow x \notin A$
(RZ: OK. Formally, the first chain of \Longleftrightarrow is enough. In an exam, I'd expect more justification - here it's OK.)
2.

Define
$\psi(x, y)= \begin{cases}0 & \text { if } \varphi_{x}(y)=5 \\ \uparrow & \text { o.w. }\end{cases}$
it's easy to see that ψ is recursive (RZ: ok, in an exam, state why (e.g. using the "if-then-else" lemma on RE predicates)), hence by S-M-N theorem there exists a (total) recursive function g s.t. $\psi(x, y)=\varphi_{g(x)}(y)$.

Now we can define v_{B} for B in the following way:
$v_{B}(x)= \begin{cases}1 & \text { if } f\left(2^{g(x)} 3^{2}\right)=3 \\ 0 & \text { o.w. }\end{cases}$
Again, the verifier of B is recursive under the assumption of f being recursive (which is not). Let's check that it's also properly defined:

$$
\begin{aligned}
& v_{B}(x)=1 \Longleftrightarrow f\left(2^{g(x)} 3^{2}\right)=3 \Longleftrightarrow \varphi_{g(x)}(2)=0 \Longleftrightarrow \varphi_{x}(2)=5 \Longleftrightarrow x \in B \\
& v_{B}(x)=0 \Longleftrightarrow f\left(2^{g(x)} 3^{2}\right)=0 \Longleftrightarrow \varphi_{g(x)}(2) \uparrow \Longleftrightarrow \varphi_{x}(2) \neq 5 \Longleftrightarrow x \neq B
\end{aligned}
$$

