Computability Assignment Year 2012/13 - Number 8

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ-definable.

$$
\left.A=\left\{\# M \mid \exists n \in \mathbb{N} \cdot M^{『} n\right\urcorner=_{\beta \eta}\ulcorner 5\urcorner\right\}
$$

1.1 Answer

- (sem. closed) $\# M \in A \Rightarrow \exists n \cdot M \llbracket n^{\urcorner}={ }_{\beta \eta}{ }^{\llbracket} 5^{\urcorner}, \forall N \cdot M={ }_{\beta \eta} N \Rightarrow M \llbracket n^{\rrbracket}={ }_{\beta \eta}$ $N \pi n\urcorner={ }_{\beta \eta}{ }^{\llbracket} 5^{\urcorner} \Rightarrow \# N \in A$
- (not empty) $\left.\#(\lambda n . \llbracket)^{\urcorner}\right) \in A$
- $(\operatorname{not} \mathbb{N}) \#\left(\lambda n .{ }^{\llbracket} 0^{\pi}\right) \notin A$

By Rice's theorem, A is not λ-definable.

2 Question

Prove that the following set is semantically closed. Then, prove that it is λ definable.

$$
A=\left\{\# M \mid \forall N \in \Lambda . N M={ }_{\beta \eta} \mathbf{I}\right\}
$$

2.1 Answer

- (sem. closed) $\# M \in A \Rightarrow \forall N \in \Lambda . N M={ }_{\beta \eta} \mathbf{I}, \forall M^{\prime} \in \Lambda . M={ }_{\beta \eta} M^{\prime} \Rightarrow$ $N M={ }_{\beta \eta} N M^{\prime}={ }_{\beta \eta} \mathbf{I}$
(RZ: you don't need this!)
- We prove $A=\varnothing$. Suppose $\exists M . \forall N \in \Lambda . N M={ }_{\beta \eta} \mathbf{I}$, Let $N^{\prime}=\lambda m . \mathbf{K} \Omega m \in$ Λ, we have $N^{\prime} M={ }_{\beta \eta} \Omega$. Hence $V_{A}=\lambda n . \mathbf{F}$.

Note.

The following exercise is harder. Feel free to skip it.

3 Question

Prove whether the following set is λ-definable.

$$
A=\left\{\# M \mid M\ulcorner M\urcorner=_{\beta \eta} M\right\}
$$

(Note: there is at least one simple solution to this. You do not need to try huge formulae for this.)

3.1 Answer

Due to the result we had during the lecture, this set is not semantically closed (from $M={ }_{\beta \eta} N$, we can hardly have $\ulcorner M\urcorner={ }_{\beta \eta}\ulcorner N\urcorner$). It seems a hard set.

Let's suppose it is λ-definable. Then we can write a verifier V_{A}.
Thus $B=\left\{\# M \mid \mathbf{K} M={ }_{\beta \eta} M\right\}$ is λ-defined by

$$
V_{B}=\lambda n \cdot V_{A}(\mathbf{A p p} \mathbf{K} n)
$$

$\left(\right.$ RZ: should be $\left.V_{B}=\lambda n \cdot V_{A}(\mathbf{A p p} \mathbf{K}(\operatorname{Num} n))\right)$
We show that such a V_{B} does work. Indeed,

$$
\mathbf{K} M\ulcorner\mathbf{K} M\urcorner={ }_{\beta \eta} \mathbf{K} M \Rightarrow \mathbf{K} M={ }_{\beta \eta} M
$$

(RZ: ok, a bit more details about why V_{B} works (in the exam, at least)) However, B is not λ-definable according to Rice's theorem:

- B is sem. closed. $M={ }_{\beta \eta} N \wedge \mathbf{K} M={ }_{\beta \eta} M \Rightarrow \mathbf{K} M={ }_{\beta \eta} \mathbf{K} N={ }_{\beta \eta} M={ }_{\beta \eta}$ N
- B is not empty, by Tarski, take $M=\Theta \mathbf{K}$.
- B is $\operatorname{not} \mathbb{N}, \mathbf{K K} \not \nRightarrow_{\beta \eta} \mathbf{K}$

We reach a contradiction, hence A is not λ-definable.

