Computability Assignment Year 2012/13 - Number 8

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ-definable.

$$
A=\left\{\# M \mid \exists n \in \mathbb{N} . M\left\ulcorner n^{\top}={ }_{\beta \eta}{ }^{\ulcorner } 5^{\rrbracket}\right\}\right.
$$

1.1 Answer

To proove that A is not λ-definable, one can use the Theorem of Rice, which requires the following three conditions to hold:

1) A is semantically closed
$\# M \in A \wedge M={ }_{\beta \eta} N$
$\left.\Longrightarrow \exists n \in \mathbb{N} . M\ulcorner n\urcorner={ }_{\beta \eta} \llbracket 5\right\urcorner \wedge M={ }_{\beta \eta} N$
$\left.\Longrightarrow \exists n \in \mathbb{N} . N \llbracket n\urcorner={ }_{\beta \eta} \llbracket 5\right\urcorner$
$\Longrightarrow \# N \in A, \mathrm{Ok}$
2) $A \neq \emptyset$
$\#\left(\lambda x_{0} \cdot{ }^{\llbracket} 5^{\urcorner}\right) \in A$
3) $A \neq \mathbb{N}$
$\# \Omega \notin A$
Hence, as a matter of fact, the set A is not recursive // λ-definable.

2 Question

Prove that the following set is semantically closed. Then, prove that it is λ definable.

$$
A=\left\{\# M \mid \forall N \in \Lambda . N M={ }_{\beta \eta} \mathbf{I}\right\}
$$

2.1 Answer

1) Semantically Closed (RZ: you don't need this)
$\# M \in A \wedge M={ }_{\beta \eta} P$
$\Longrightarrow \forall N \in \Lambda . N M={ }_{\beta \eta} I \wedge M={ }_{\beta \eta} P$
$\Longrightarrow \forall N \in \Lambda . N P={ }_{\beta \eta} I$
$\Longrightarrow \# P \in A$
2) Prove that it is λ-definable

Note that it does not exist any $\# M$ such that $(K \Omega) M={ }_{\beta \eta} I$. Therefore $A=\emptyset$ and it is obviously recursive / λ-definable.

Note.

The following exercise is harder. Feel free to skip it.

3 Question

Prove whether the following set is λ-definable.

$$
A=\left\{\# M \mid M\ulcorner M\urcorner={ }_{\beta \eta} M\right\}
$$

(Note: there is at least one simple solution to this. You do not need to try huge formulae for this.)

3.1 Answer

Let's define
$V_{B}\ulcorner M\urcorner=\left(\lambda x . V_{A}\ulcorner(A p p\ulcorner K\urcorner x)\urcorner\right)\ulcorner M\urcorner=V_{A}\ulcorner(A p p\ulcorner K\urcorner M)\urcorner=V_{A}\ulcorner K M\urcorner$
(RZ: formally, you can not use x under the corners $\ulcorner x\urcorner$, you need to exploit Lam, App, Num instead.)
so that we can get rid of the nasty source code reference. The latter step behaves in the following way:
$\ulcorner K M\urcorner \in A \Longleftrightarrow K M\ulcorner K M\urcorner={ }_{\beta \eta} K M \Longleftrightarrow M={ }_{\beta \eta} K M$
Let's see what V_{B} gives us: $B=\left\{\# M \mid M={ }_{\beta \eta} K M\right\}$. We are lucky and the set looks not recursive, which is exactly what is needed to use the reduction argument approach and state that A is not recursive as well. So let's prove that this set is not recursive using Rice Theorem:

- Semantically Closed:
$\# M \in B \wedge M={ }_{\beta \eta} N$
$\Longrightarrow M={ }_{\beta \eta} K M \wedge M={ }_{\beta \eta} N$
$\Longrightarrow N={ }_{\beta \eta} K N$
$\Longrightarrow \# N \in B$
- $B \neq \emptyset$: (here I may be wrong in the usage of $E / N u m . . ?)$

Let's take $M=\Theta F$, with $F=\lambda f$. $E\left(L^{\circ}{ }^{\ulcorner } 0^{\urcorner}(N u m f)\right)$, then:
(RZ: Num f doesn't work exactly as this. $M=\Theta K=K(\Theta K)=K M$ is much simpler (and correct))
rh: $M=\Theta F=E(L a m\ulcorner 0\urcorner\ulcorner\Theta F\urcorner)=E\left\ulcorner\lambda x_{0} . \Theta F\right\urcorner=\lambda x_{0} . \Theta F$
lh: $K M=(\lambda x y \cdot x)(\Theta F)=\lambda y \cdot \Theta F$
The left/right handsides are $\beta \eta$-equivalent up to α-conversions, therefore $\#(\Theta F) \in B$.
$-B \neq \mathbb{N}$:
Take $M=I$, then $K I=\lambda y . I \neq I$, hence $\# I \notin B$.
V'GER

