Computability Assignment Year 2012/13 - Number 7

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ-definable.

$$
A=\{\# M \mid M \text { has a } \beta \text {-normal form }\}
$$

(Hint: show that, if A were λ-definable, then also K_{λ} would be λ-definable, hence obtaining a contradiction.)

1.1 Answer

Trivia: $K_{\lambda}=\{\# M \mid M\ulcorner M\urcorner$ has a β - normal form $\}$ (Definition 140, p. 51 Notes)

Let's suppose that there exists a verifier V_{A} for the set A s.t.
$V_{A}(\# M)= \begin{cases}1 & M \text { has a } \beta-\text { normal form } \\ 0 & \text { o.w. }\end{cases}$
Then we could construct a verifier $V_{K_{\lambda}}$ in the following way:

$$
V_{K_{\lambda}}(\# M)= \begin{cases}1 & M\ulcorner M\urcorner \text { belongs to } A \\ 0 & \text { o.w. }\end{cases}
$$

Intuitively, we have used the property that with the expression $M\ulcorner M\urcorner$ we are fixing a chosen input to a chosen program, which in turns continues to be a program (with less input variables). Since the verifier V_{A} can tell us whether a program has a β-normal form, we can use it to build the verifier for the set K_{λ}. This is a contraddiction, since the set set K_{λ} can have only a partial verifier, which is mandatory since it's a recursively enumerable set strictly not recursive.

2 Question

Let A be a λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also λ-definable.
(Hint: do not reinvent the results we saw in class, just apply them.)

2.1 Answer

Trivia: by theorem, a λ-definable set is closed under union, complement and intersection operation with a single element. (Lemma 133, p. 49 Notes)

Given fixed $n, m \in \mathbb{N}$, we can reuse the theorem property and prove that B is λ-definable using the following construction:
$\left.B=\left(\left(\left(\left(\left(\left(\left(\left(\left(A \cup\left\{b_{1}\right\}\right) \cup\left\{b_{2}\right\}\right) \ldots\right) \cup\left\{b_{n}\right\}\right)\right) \backslash\left\{c_{1}\right\}\right) \backslash\left\{c_{2}\right\}\right) \ldots\right) \backslash\left\{c_{m}\right\}\right)\right)$
Then, by applying a union / complementation with a single element in a left-to-right order we are able to reuse the theorem and prove that each and every intermediate set (plust the last one) is λ - definable as we wished.

3 Question

Let A be a non λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also non λ-definable.
(Hint: prove the contrapositive. That is, prove that if B were λ-definable, then also A would be such.)

3.1 Answer

The Hint says really everything. Let's write:
$\left.A=\left(\left(\left(\left(\left(\left(\left(\left(\left(B \cup\left\{c_{m}\right\}\right) \cup\left\{c_{m-1}\right\}\right) \ldots\right) \cup\left\{c_{1}\right\}\right)\right) \backslash\left\{b_{n}\right\}\right) \backslash\left\{b_{n-1}\right\}\right) \ldots\right) \backslash\left\{b_{1}\right\}\right)\right)$
by the same theorem mentioned above, the assumption of B being $\lambda-$ definable follows in the necessary consequence that also A is λ-definable. Which contraddicts the property we already know. Hence B must be a non λ - definable set.
(RZ: correct idea. Note that the above equation is not completely true in the general case. For instance if $A=\mathbb{N}, B=(A \cup\{3,4,5\}) \backslash\{4,5,6\}=\mathbb{N} \backslash\{4,5,6\}$ then we do not have $A=(B \cup\{4,5,6\}) \backslash\{3,4,5\}=\mathbb{N} \backslash\{3,4,5\}$. Before performing what you did you need to reduce $\left\{b_{i}, \ldots\right\}$ and $\left\{c_{i}, \ldots\right\}$ to a minimal set, by removing e.g. those b_{i} which occur in A or in $\left\{c_{i}\right\}$, and removing those c_{i} not belonging to $\left.A \cup\left\{b_{i}, \ldots\right\}\right)$

V'GER

