Computability Assignment Year 2012/13 - Number 7

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at 1
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ-definable.

$$
A=\{\# M \mid M \text { has a } \beta \text {-normal form }\}
$$

(Hint: show that, if A were λ-definable, then also K_{λ} would be λ-definable, hence obtaining a contradiction.)

1.1 Answer

By contradiction. Say A is λ-defined by V_{A}. We can build a verifier for K_{λ} as follows,

$$
V_{\mathrm{K}_{\lambda}}=\lambda n \cdot V_{A}(\mathbf{A p p} n(\mathbf{N u m} n))
$$

(RZ: ok, in an exam I'll want you to state why $V_{K_{\lambda}}$ works as expected)

2 Question

Let A be a λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also λ-definable.
(Hint: do not reinvent the results we saw in class, just apply them.)

[^0]
2.1 Answer

Say A is λ-defined by V_{A}. We know the finite sets $B_{0}=\left\{b_{1}, \cdots, b_{n}\right\}, C=$ $\left\{c_{1}, \cdots c_{m}\right\}$ can be respectively defined by $V_{B_{0}}$ and V_{C}. We can write a verifier for B since $B=\left(A \cup B_{0}\right) \backslash C$.

3 Question

Let A be a non λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also non λ-definable.
(Hint: prove the contrapositive. That is, prove that if B were λ-definable, then also A would be such.)

3.1 Answer

Let's try the contraposition. If B is λ-defined by V_{B}, then $B \backslash B_{0}$ is λ-definable. $A \cap B_{0} \subseteq B_{0}$ and $A \cap C \subseteq C$ are finite sets, they are also definable. hence $A=$ $\left(B \backslash B_{0}\right) \cup\left(A \cap B_{0}\right) \cup(A \cap C)$ is λ-definable.
(RZ: very good. During an exam it would be nice to have a short proof of the last set equality - a Venn diagram is enough)

[^0]: ${ }^{1}$ http://disi.unitn.it/~zunino/teaching/computability/assignments

