Computability Assignment Year 2012/13 - Number 7

Please keep this file anonymous: do not write your name inside this file. More information about assignments at $^{\rm 1}$

Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ -definable.

 $A = \{ \#M \mid M \text{ has a } \beta \text{-normal form} \}$

(Hint: show that, if A were λ -definable, then also K_{λ} would be λ -definable, hence obtaining a contradiction.)

1.1 Answer

By contradiction. Say A is λ -defined by V_A . We can build a verifier for K_{λ} as follows,

 $V_{\mathsf{K}_{\lambda}} = \lambda n. V_A \; (\mathbf{App} \; n \; (\mathbf{Num} \; n))$

(RZ: ok, in an exam I'll want you to state why $V_{K_{\lambda}}$ works as expected)

2 Question

Let A be a λ -definable set. Prove that

$$B = (A \cup \{b_1, \dots, b_n\}) \setminus \{c_1, \cdots, c_m\}$$

is also λ -definable.

(Hint: do not reinvent the results we saw in class, just apply them.)

 $^{^{1}}$ http://disi.unitn.it/~zunino/teaching/computability/assignments

2.1 Answer

Say A is λ -defined by V_A . We know the finite sets $B_0 = \{b_1, \dots, b_n\}, C = \{c_1, \dots, c_m\}$ can be respectively defined by V_{B_0} and V_C . We can write a verifier for B since $B = (A \cup B_0) \setminus C$.

3 Question

Let A be a **non** λ -definable set. Prove that

$$B = (A \cup \{b_1, \dots, b_n\}) \setminus \{c_1, \dots, c_m\}$$

is also **non** λ -definable.

(Hint: prove the contrapositive. That is, prove that if B were λ -definable, then also A would be such.)

3.1 Answer

Let's try the contraposition. If B is λ -defined by V_B , then $B \setminus B_0$ is λ -definable. $A \cap B_0 \subseteq B_0$ and $A \cap C \subseteq C$ are finite sets, they are also definable. hence $A = (B \setminus B_0) \cup (A \cap B_0) \cup (A \cap C)$ is λ -definable.

(RZ: very good. During an exam it would be nice to have a short proof of the last set equality - a Venn diagram is enough)