Computability Assignment Year 2012/13 - Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Write a λ-term M implementing the following specification:

$$
M \llbracket n\urcorner=\left\ulcorner\lambda x_{0} \ldots x_{n} \cdot x_{n} x_{n-1} \cdots x_{0}\right\urcorner
$$

(Note: The notation $\left.{ }^{\ulcorner } n\right\urcorner$ above stands for the numeral n, while $\ulcorner N\urcorner$ stands for $\left.{ }^{\pi} \# N\right\urcorner$ - inside LYX it's hard to tell them apart, but will appear correctly in the PDFs)

1.1 Answer

let makeBody current max $=$
match current with
\mid max \rightarrow Var current
$\mid \quad \rightarrow \quad$ App (makeBody (current +1) max) (Var current)
let makeLambdas current max $=$ match current with
$\mid \max \rightarrow$ Lam current (makeBody 0 max)
| _ $\quad \rightarrow$ Lam current (makeLambdas (current + 1) max)
let $\mathrm{mn}=$ makeLambdas 0 n
MakeBody $=\Theta \lambda$ gcm. $(E q c m)(\operatorname{Varc})(\operatorname{App}(g($ Succ c) $) m)$
(RZ: the last c should be Var c, I think)
MakeLambdas $=\Theta \lambda g c m .(E q c m)\left(\operatorname{Lamc}\left(\right.\right.$ MakeBody $\left.\left.{ }^{\ulcorner } 0{ }^{\square} m\right)\right)(\operatorname{Lamc}(g($ Succ1 $) m))$
(RZ: maybe Succ c, not Succ 1)
$M=\lambda n$.MakeLambdas ${ }^{\pi}{ }^{7}{ }^{7} n$

2 Question

Write a λ-term M which, when given as input $\ulcorner N\urcorner$, evaluates to $\ulcorner O\urcorner$, where O is obtained from N by replacing every syntactic occurrence of Ω with \mathbf{I}.

To the purpose of this exercise, assume $\Omega=\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)$ and $\mathbf{I}=$ $\lambda x_{0} \cdot x_{0}$.

For example, here are some expected outputs:

$$
\begin{aligned}
& \left.M\left\ulcorner\lambda x_{5} \cdot \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda_{5} \cdot \mathbf{I}\right\urcorner\right\urcorner \\
& M\left\ulcorner\lambda x_{3} \cdot \mathbf{K} \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{3} \cdot \mathbf{K I}\right\urcorner \\
& M\left\ulcorner\lambda x_{1} \cdot x_{1} \Omega\left(\lambda x_{7} \cdot x_{1} \Omega\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{1} \cdot x_{1} \mathbf{I}\left(\lambda x_{7} \cdot x_{1} \mathbf{I}\right)\right\urcorner \\
& M\left\ulcorner\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\right\urcorner={ }_{\beta \eta}\ulcorner\mathbf{I}\urcorner \\
& M\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner
\end{aligned}
$$

Hint: use Sd, etc. as approprate.

2.1 Answer

M is a function that visits the whole syntax tree and returns an updated syntax tree. Applications that match Ω are replaced withI.
$V=\lambda g i . \operatorname{Var} i$
$A=\lambda g m n .(E q(A p p m n)\ulcorner\Omega\urcorner)\ulcorner\mathbf{I}\urcorner(A p p(g m)(g n))$
$L=\lambda \operatorname{gim} . \operatorname{Lam} i(g m)$
$M=\Theta \lambda g n . S d n(V g)(A g)(L g)$
(RZ: ok, you could also have checked for Ω before using $S d$. Looks correct anyway)

