Computability Assignment Year 2012/13 - Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Write a λ-term M implementing the following specification:

$$
M\ulcorner n\urcorner=\left\ulcorner\lambda x_{0} \ldots x_{n} \cdot x_{n} x_{n-1} \cdots x_{0}\right\urcorner
$$

(Note: The notation ${ }\ulcorner n\urcorner$ above stands for the numeral n, while $\ulcorner N\urcorner$ stands for $\left.{ }^{\pi} \# N\right\urcorner$ - inside LYX it's hard to tell them apart, but will appear correctly in the PDFs)
$\operatorname{Lam}\ulcorner 0\urcorner\left(\operatorname{Lam}\ulcorner n\urcorner _F s t _n G\left(\operatorname{Cons}(\operatorname{Var}\ulcorner n\urcorner) _n\right)\right)$
$G=\lambda p, \operatorname{Cons}\left(A p p _F s t(p) _\operatorname{Var}\ulcorner\operatorname{Pred}(\operatorname{Sndp})\urcorner\right) _(\operatorname{Predn})$
(RZ: this looks rather wrong. What about the other lambdas? Also, be careful because you don't want to use $\ulcorner-\urcorner$ here. Be more precise about where you put parenteses, many seem to be missing and/or put in the wrong places.)

1.1 Answer

Write your answer here.

2 Question

Write a λ-term M which, when given as input $\ulcorner N\urcorner$, evaluates to $\ulcorner O\urcorner$, where O is obtained from N by replacing every syntactic occurrence of Ω with \mathbf{I}.

To the purpose of this exercise, assume $\Omega=\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)$ and $\mathbf{I}=$ $\lambda x_{0} \cdot x_{0}$.

For example, here are some expected outputs:

$$
\begin{aligned}
& M\left\ulcorner\lambda x_{5} \cdot \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda_{5} \cdot \mathbf{x _ { 5 }} \mathbf{I}\right\urcorner \\
& M\left\ulcorner x_{3} \cdot \mathbf{K} \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{3} \cdot \mathbf{K I}\right\urcorner \\
& M\left\ulcorner\lambda x_{1} \cdot x_{1} \Omega\left(\lambda x_{7} \cdot x_{1} \Omega\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{1} \cdot x_{1} \mathbf{I}\left(\lambda x_{7} \cdot x_{1} \mathbf{I}\right)\right\urcorner \\
& M\left\ulcorner\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\right\urcorner={ }_{\beta \eta}\ulcorner\mathbf{I}\urcorner \\
& M\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner
\end{aligned}
$$

Hint: use Sd, etc. as approprate.

2.1 Answer

$$
\begin{aligned}
\ulcorner \# \Omega\urcorner & =449 \\
M & =\Theta\left(\lambda g \cdot x \cdot E q _x _\ulcorner 449\urcorner\ulcorner I\urcorner\left(S d _x_{-} V_{-} A_{-} L\right)\right) \\
V & =\lambda i \cdot V a r _i \\
A & =\lambda p \cdot q \cdot A_{p p}(g p) _(g q) \\
L & =\lambda i . n \cdot L_{1} m_{-} i _(g n)
\end{aligned}
$$

