Computability Assignment Year 2012/13 - Number 6

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments **Please do not submit a file containing only the answers; edit this**

file, instead, filling the answer sections.

1 Question

Write a λ -term M implementing the following specification:

$$M \ \ulcorner n \urcorner = \ulcorner \lambda x_0 \dots x_n \dots x_n x_{n-1} \dots x_0 \urcorner$$

(Note: The notation $\lceil n \rceil$ above stands for the numeral n, while $\lceil N \rceil$ stands for $\lceil \#N \rceil$ – inside LYX it's hard to tell them apart, but will appear correctly in the PDFs)

 $Lam \ulcorner 0 \urcorner (Lam \ulcorner n \urcorner _Fst_nG(Cons(Var \ulcorner n \urcorner)_n))$

 $G = \lambda p, Cons(App_Fst(p)_Var^{\ulcorner}Pred(Sndp)^{\urcorner})_{(Predn)}$

(RZ: this looks rather wrong. What about the other lambdas? Also, be careful because you don't want to use $\neg \neg$ here. Be more precise about where you put parenteses, many seem to be missing and/or put in the wrong places.)

1.1 Answer

Write your answer here.

2 Question

Write a λ -term M which, when given as input $\lceil N \rceil$, evaluates to $\lceil O \rceil$, where O is obtained from N by replacing every syntactic occurrence of Ω with **I**.

To the purpose of this exercise, assume $\Omega = (\lambda x_0 . x_0 x_0)(\lambda x_0 . x_0 x_0)$ and $\mathbf{I} = \lambda x_0 . x_0$.

For example, here are some expected outputs:

```
M \ \lceil \lambda x_5.\Omega \rceil =_{\beta\eta} \ \lceil \lambda x_5.\mathbf{I} \rceilM \ \lceil \lambda x_3.\mathbf{K}\Omega \rceil =_{\beta\eta} \ \lceil \lambda x_3.\mathbf{K}\mathbf{I} \rceilM \ \lceil \lambda x_1.x_1\Omega(\lambda x_7.x_1\Omega) \rceil =_{\beta\eta} \ \lceil \lambda x_1.x_1\mathbf{I}(\lambda x_7.x_1\mathbf{I}) \rceilM \ \lceil (\lambda x_0.x_0x_0)(\lambda x_0.x_0x_0) \rceil =_{\beta\eta} \ \lceil \mathbf{I} \rceilM \ \lceil (\lambda x_1.x_1x_1)(\lambda x_1.x_1x_1) \rceil =_{\beta\eta} \ \lceil (\lambda x_1.x_1x_1)(\lambda x_1.x_1x_1) \rceil
```

Hint: use **Sd**, etc. as approprate.

2.1 Answer

$$\begin{split} & \ulcorner \#\Omega \urcorner = 449 \\ & M = \ominus (\lambda g.x. Eq_x_\ulcorner 449 \urcorner \ulcorner I \urcorner (Sd_x_V_A_L)) \\ & V = \lambda i. Var_i \\ & A = \lambda p.q. App_(gp)_(gq) \\ & L = \lambda i.n. Lam_i_(gn) \end{split}$$