Computability Assignment Year 2012/13 - Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments on the websit ${ }^{11}$.
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Write a λ-term M implementing the following specification:

$$
M\ulcorner n\urcorner=\left\ulcorner\lambda x_{0} \ldots x_{n} \cdot x_{n} x_{n-1} \cdots x_{0}\right\urcorner
$$

(Note: The notation $\ulcorner n\urcorner$ above stands for the numeral n, while $\ulcorner N\urcorner$ stands for $\left.{ }^{\pi} \# N\right\urcorner$ - inside $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ it's hard to tell them apart, but they will appear correctly in the PDFs)

1.1 Answer

F recursively creates $\left\ulcorner x_{n} x_{n-1} \cdots x_{0}\right\urcorner, G$ recursively adds the lambda abstraction part.

$$
\begin{aligned}
M & =\lambda n \cdot G\ulcorner 0 \rrbracket \\
G & =\boldsymbol{\Theta}(\lambda g j \cdot \mathbf{I s Z e r o}(\operatorname{Sub} n j)(\operatorname{Lam} n(F\ulcorner 0 \rrbracket))(\operatorname{Lam} j(g(\operatorname{Succ} j)))) \\
F & =\boldsymbol{\Theta}(\lambda f i . \mathbf{I s Z e r o}(\operatorname{Sub} n i)(\operatorname{Var} n)(\mathbf{A p p}(f(\operatorname{Succ} i))(\operatorname{Var} i)))
\end{aligned}
$$

2 Question

Write a λ-term M which, when given as input $\ulcorner N\urcorner$, evaluates to $\ulcorner O\urcorner$, where O is obtained from N by replacing every syntactic occurrence of Ω with \mathbf{I}.

[^0]To the purpose of this exercise, assume $\Omega=\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)$ and $\mathbf{I}=$ $\lambda x_{0} \cdot x_{0}$.

For example, here are some expected outputs:

$$
\begin{aligned}
& M\left\ulcorner\lambda x_{5} \cdot \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda_{5} \cdot \mathbf{I}\right\urcorner \\
& M\left\ulcorner\left\ulcorner x_{3} \cdot \mathbf{K} \Omega\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{3} \cdot \mathbf{K I}\right\urcorner\right. \\
& M\left\ulcorner\lambda x_{1} \cdot x_{1} \Omega\left(\lambda x_{7} \cdot x_{1} \Omega\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\lambda x_{1} \cdot x_{1} \mathbf{I}\left(\lambda x_{7} \cdot x_{1} \mathbf{I}\right)\right\urcorner \\
& M\left\ulcorner\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\right\urcorner={ }_{\beta \eta}\ulcorner\mathbf{I}\urcorner \\
& M\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner={ }_{\beta \eta}\left\ulcorner\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\left(\lambda x_{1} \cdot x_{1} x_{1}\right)\right\urcorner
\end{aligned}
$$

Hint: use Sd, etc. as appropriate.

2.1 Answer

We identify $\Omega=\left(\lambda x_{0} \cdot x_{0} x_{0}\right)\left(\lambda x_{0} \cdot x_{0} x_{0}\right)$ by its numeral code: $\# \Omega=449$.

$$
\begin{aligned}
M & =\boldsymbol{\Theta}(\lambda e n . \mathbf{E q} n\ulcorner 449\urcorner\ulcorner\mathbf{I}\urcorner(\mathbf{S d} n V A L)) \\
V & =\lambda i \cdot \operatorname{Var} i \\
A & =\lambda p q \cdot \mathbf{A p p} e p(e q) \\
L & =\lambda i m \cdot \mathbf{L a m} i(e m)
\end{aligned}
$$

(RZ: should be $A=\lambda p q . \mathbf{A p p}(e p)(e q)$ above)

[^0]: ${ }^{1}$ http://disi.unitn.it/~zunino/teaching/computability/assignments

