Question 1. Let \mathcal{F} be the set of parital functions $\{f \in N \rightsquigarrow N | \forall x \in \mathbb{N}. f(2x) = x\}$

- Define two distinct partial functions f_1, f_2 which belong to \mathcal{F}

i) Let $f_1 \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$f_1(n) = \begin{cases} n/2 & \text{,if } n \text{ is even} \\ n & \text{,otherwise} \end{cases}$$

ii) Let $f_2 \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$f_2(n) = \begin{cases} n/2 & \text{,if } n \text{ is even} \\ \text{undefined} & \text{,otherwise} \end{cases}$$

- Define two distinct partial functions g_1, g_2 that do not belong to Fi) g_1 is the empty function \emptyset , which is a subset of $\mathbb{N} \times \mathbb{N}$, for which for any $n \in \mathbb{N}, g(n)$ is undefined

ii) Let g_2 be such that $\forall n \in \mathbb{N}$,

$$g_2(n) = \begin{cases} n & \text{,if } n = 0\\ \text{undefined} & \text{,otherwise} \end{cases}$$

- Define a partial function $f \in \mathcal{F}$, and consider the set of its finite restrictions $\mathcal{G} = \{g \in \mathbb{N} \rightsquigarrow \mathbb{N} | g \subseteq f \land dom(g) \ finite\}$ Let $f \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$f(n) = \begin{cases} n/2 & \text{,if } n \text{ is even} \\ \text{undefined} & \text{,otherwise} \end{cases}$$

Define two partial functions h₁, h₂ that belongs to G
i) Let h₁: {0} → N be defined such that ∀n ∈ N,

$$h_1(n) = \begin{cases} n/2 & \text{,if } n = 0\\ \text{undefined} & \text{,otherwise} \end{cases}$$

ii) Let $h_2: \{2\} \to \mathbb{N}$ be defined such that $\forall n \in \mathbb{N}$,

$$h_2(n) = \begin{cases} n/2 & \text{,if } n = 2\\ \text{undefined} & \text{,otherwise} \end{cases}$$

• Prove whether $\mathcal{F} \cap \mathcal{G} = \emptyset$

 $\mathcal{F} \cap \mathcal{G} = \emptyset$, since by definition, for any $f \in \mathcal{F}, dom(f) \supseteq \{0, 2, ..\}$, i.e. dom(f) at least contains the set of even numbers which is a infinite set, where as by definition any $g \in \mathcal{G}, dom(g)$ is finite. Since there exists no $g \in \mathcal{G}$ such that dom(g) that contains the infinite set of even numbers, $\mathcal{F} \cap \mathcal{G} = \emptyset$

Definition 1. Let \mathcal{R} be the set of inference rules over elements of a set A. Then R induces a function $\hat{R} : \mathcal{P}(A) \to \mathcal{P}(A)$ given by

$$\hat{R}(X) = \{y | \exists \frac{x_1, \dots, x_n}{z} \in \mathcal{R} \land y = z \land \forall i \in \{1, \dots, n\}. x_i \in X\}$$

Question 2. Let m, n range over \mathbb{N} , consider the following set of inference rules \mathcal{R}

$$\frac{n}{n.m}$$
 $\frac{n}{1}$ $\frac{n}{n.2}$

and the sets

$$E = \{2.n | n \in \mathbb{N}\} \qquad O = \{2.n + 1 | n \in \mathbb{N}\}\$$

Then answer the following questions:

- 1. State whether $\hat{R}(O) \subseteq O$ No. because $1 \in \hat{R}(O)$, where as the least element in O is 2.
- 2. State whether $O \subseteq \hat{R}(O)$. Since $O = \{2, 4, 6, ...\}$, where as $2 \notin \hat{R}(O)$. The answer is NO
- 3. State whether $\hat{R}(E) \subseteq E$. Since $E = \{0, 2, 4, ...\}$ and since $1 \in \hat{R}(R)$, where as $1 \notin E$, the answer is NO.
- 4. State whether $E \subseteq \hat{R}(E)$. Since E is the set of even numbers and since the application of inference rule $\frac{n}{2,n}$ on E produces E it self. The answer is YES.
- 5. State whether $\hat{R}(\mathbb{N}) \subseteq \mathbb{N}$. Since \mathbb{N} is closed w.r.t the set of results in the consequence of each operator namely $n.m, 1, n.2, \hat{R} \subseteq \mathbb{N}$. The answer is YES.
- 6. State whether $\mathbb{N} \subseteq \hat{R}(\mathbb{N})$. Since the application of inference rule $\frac{n-m}{n.m}$ on n = 1, for all $m \in \mathbb{N}$ produces \mathbb{N} it self. The answer is YES.
- 7. State whether $\hat{R}(E \cup \{1\}) \subseteq E \cup \{1\}$. Since $E \cup \{1\} = \{0, 1, 2, 4, 6, ...\}$. Since the application rules $\frac{m-n}{m.n}$ and $\frac{n}{2.n}$ on the set $E \cup \{1\}$ produces only the set E, where as $\frac{1}{1}$ produces only $\{1\}$, hence $\hat{R}(E) \cup \{1\} = E \cup \{1\}$
- 8. Characterize the minimum fix-point of \hat{R} , i.e $\bigcap \{X | \hat{R}(X) = X\}$. Since by previous answers it follows that, the minimum fix-point is $E \cup \{1\}$
- 9. Characterize the maximum fix-point of \hat{R} , i.e $\bigcup \{X | \hat{R}(X) = X\}$. Since we already proved that $\hat{R}(\mathbb{N}) \subseteq \mathbb{N}$. The maximum fix-point is N