Question 1. Let \mathcal{F} be the set of parital functions $\{f \in N \rightsquigarrow N \mid \forall x \in \mathbb{N} . f(2 x)=$ $x\}$

- Define two distinct partial functions f_{1}, f_{2} which belong to \mathcal{F}
i) Let $f_{1} \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$
f_{1}(n)= \begin{cases}n / 2 & , \text { if } n \text { is even } \\ n & , \text { otherwise }\end{cases}
$$

ii) Let $f_{2} \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$
f_{2}(n)= \begin{cases}n / 2 & , \text { if } n \text { is even } \\ \text { undefined } & , \text { otherwise }\end{cases}
$$

- Define two distinct partial functions g_{1}, g_{2} that do not belong to F
i) g_{1} is the empty function \emptyset, which is a subset of $\mathbb{N} \times \mathbb{N}$, for which for any $n \in \mathbb{N}, g(n)$ is undefined
ii) Let g_{2} be such that $\forall n \in \mathbb{N}$,

$$
g_{2}(n)= \begin{cases}n & , \text { if } n=0 \\ \text { undefined } & , \text { otherwise }\end{cases}
$$

- Define a partial function $f \in \mathcal{F}$, and consider the set of its finite restrictions $\mathcal{G}=\{g \in \mathbb{N} \rightsquigarrow \mathbb{N} \mid g \subseteq f \wedge \operatorname{dom}(g)$ finite $\}$
Let $f \in \mathcal{F}$ be such that $\forall n \in \mathbb{N}$,

$$
f(n)= \begin{cases}n / 2 & \text {,if } n \text { is even } \\ \text { undefined } & \text {,otherwise }\end{cases}
$$

- Define two partial functions h_{1}, h_{2} that belongs to \mathcal{G}
i) Let $h_{1}:\{0\} \rightarrow \mathbb{N}$ be defined such that $\forall n \in \mathbb{N}$,

$$
h_{1}(n)= \begin{cases}n / 2 & , \text { if } n=0 \\ \text { undefined } & , \text { otherwise }\end{cases}
$$

ii) Let $h_{2}:\{2\} \rightarrow \mathbb{N}$ be defined such that $\forall n \in \mathbb{N}$,

$$
h_{2}(n)= \begin{cases}n / 2 & , \text { if } n=2 \\ \text { undefined } & , \text { otherwise }\end{cases}
$$

- Prove whether $\mathcal{F} \cap \mathcal{G}=\emptyset$
$\mathcal{F} \cap \mathcal{G}=\emptyset$, since by definition, for any $f \in \mathcal{F}, \operatorname{dom}(f) \supseteq\{0,2, .$.$\} , i.e.$ $\operatorname{dom}(f)$ atleast contains the set of even numbers which is a infinite set, where as by definition any $g \in \mathcal{G}, \operatorname{dom}(g)$ is finite. Since there exists no $g \in \mathcal{G}$ such that $\operatorname{dom}(g)$ that contains the infinite set of even numbers, $\mathcal{F} \cap \mathcal{G}=\emptyset$

Definition 1. Let \mathcal{R} be the set of inference rules over elements of a set A. Then R induces a function $\hat{R}: \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ given by

$$
\hat{R}(X)=\left\{y \left\lvert\, \exists \frac{x_{1}, \ldots, x_{n}}{z} \in \mathcal{R} \wedge y=z \wedge \forall i \in\{1, \ldots, n\} . x_{i} \in X\right.\right\}
$$

Question 2. Let m, n range over \mathbb{N}, consider the following set of inference rules \mathcal{R}

$$
\frac{n m}{n \cdot m} \quad \overline{1} \quad \frac{n}{n .2}
$$

and the sets

$$
E=\{2 . n \mid n \in \mathbb{N}\} \quad O=\{2 . n+1 \mid n \in \mathbb{N}\}
$$

Then answer the following questions:

1. State whether $\hat{R}(O) \subseteq O$

No. because $1 \in \hat{R}(O)$, where as the least element in O is 2 .
2. State whether $O \subseteq \hat{R}(O)$. Since $O=\{2,4,6, \ldots\}$, where as $2 \notin \hat{R}(O)$. The answer is NO
3. State whether $\hat{R}(E) \subseteq E$.

Since $E=\{0,2,4, \ldots\}$ and since $1 \in \hat{R}(R)$, where as $1 \notin E$, the answer is NO.
4. State whether $E \subseteq \hat{R}(E)$. Since E is the set of even numbers and since the application of inference rule $\frac{n}{2 . n}$ on E produces E it self. The answer is YES.
5. State whether $\hat{R}(\mathbb{N}) \subseteq \mathbb{N}$. Since \mathbb{N} is closed w.r.t the set of results in the consequence of each operator namely $n . m, 1, n .2, \hat{R} \subseteq \mathbb{N}$. The answer is YES.
6. State whether $\mathbb{N} \subseteq \hat{R}(\mathbb{N})$. Since the application of inference rule $\frac{n m}{n . m}$ on $n=1$, for all $m \in \mathbb{N}$ produces \mathbb{N} it self. The answer is YES.
7. State whether $\hat{R}(E \cup\{1\}) \subseteq E \cup\{1\}$. Since $E \cup\{1\}=\{0,1,2,4,6, \ldots\}$. Since the application rules $\frac{m n}{m \cdot n}$ and $\frac{n}{2 . n}$ on the set $E \cup\{1\}$ produces only the set E, where as $\overline{1}^{\text {p }}$ produces only $\{1\}$, hence $\hat{R}(E) \cup\{1\}=E \cup\{1\}$
8. Characterize the minimum fix-point of \hat{R}, i.e $\bigcap\{X \mid \hat{R}(X)=X\}$. Since by previous answers it follows that, the minimum fix-point is $E \cup\{1\}$
9. Characterize the maximum fix-point of \hat{R}, i.e $\bigcup\{X \mid \hat{R}(X)=X\}$. Since we already proved that $\hat{R}(\mathbb{N}) \subseteq \mathbb{N}$. The maximum fix-point is N

