Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

A partial function g is said to be a restriction of a partial function f , written $g\subseteq f$ iff

$$\forall x \in \mathsf{dom}(g). \ g(x) = f(x)$$

Note: this notation "overloads" the symbol \subseteq . Indeed, we shall write $A \subseteq B$ to express a subset relation between two sets, and $g \subseteq f$ to express a restriction relation between two functions.

(From a formal point of view, since we defined functions as set of pairs the two notions coincide: the restriction relation above is equivalent to requiring that $\langle a,b\rangle\in g \implies \langle a,b\rangle\in f$ for all a,b, which indeed states that g is a "subset" of f).

2 Question

Let \mathcal{F} be the set of partial functions $\{f \in (\mathbb{N} \leadsto \mathbb{N}) | \forall x \in \mathbb{N}. \ f(2 \cdot x) = x\}.$

- Define two distinct partial functions f_1, f_2 which belong to \mathcal{F} . (I.e, provide two such examples.)
- Define two distinct partial functions g_1, g_2 which do *not* belong to \mathcal{F} . (I.e, provide two such examples.)
- Define a partial function $f \in \mathcal{F}$, and consider the set of its *finite* restrictions $\mathcal{G} = \{g \in (\mathbb{N} \leadsto \mathbb{N}) | g \subseteq f \land \mathsf{dom}(g) \text{ finite} \}.$
 - Define two distinct partial functions h_1, h_2 which belong to \mathcal{G} . (I.e, provide two such examples.)

– Prove whether $\mathcal{F} \cap \mathcal{G} = \emptyset$.

2.1 Answer

1.
$$f_1(6x) = 3x, f_2(4x) = 2x \ x \in \mathbb{N}$$

(RZ: no, $f_1(2) = undef \neq 1$)

2
$$g_1(2x) = 2x, g_2(3x) = x \ x \in \mathbb{N}$$

3
$$h_1(4x)=2x, 1\leq x\leq 10$$
 $h_2(6x)=3x, 1\leq x\leq 10$ (RZ: correct, but this seems a lucky guess :-P)

$$\mathcal{F}\cap\mathcal{G}=\!\!\mathcal{G}$$

Proof $\mathcal{G} = \{g\}$ (RZ: no, \mathcal{G} contains infinitely many functions, e.g. h_1, h_2) $g \subseteq f$

$$\langle a, b \rangle \in g \implies \langle a, b \rangle \in f \quad \mathcal{F} = \{f\}$$

So,
$$\mathcal{F} \cap \mathcal{G} = \mathcal{G}$$
 (RZ: no)

Note.

The next part is an advanced exercise. I'd suggest to **skip** it, unless you want an extra challenge.

3 Preliminaries

Let \mathcal{R} be a set of inference rules over elements of a set A. Then, \mathcal{R} induces a function $\hat{\mathcal{R}} \in (\mathcal{P}(A) \to \mathcal{P}(A))$ given by

$$\hat{\mathcal{R}}(X) = \{ y \mid \exists (\frac{x_1 \dots x_n}{z}) \in \mathcal{R} \land y = z \land \forall i \in \{1, \dots, n\}. x_i \in X \}$$

4 Question

Let m,n range over natural numbers. Consider the following set of inference rules $\mathcal R$

$$\frac{n \ m}{n \cdot m}$$
 $\frac{n}{1}$ $\frac{n}{n \cdot 2}$

an the sets

$$E = \{2 \cdot n \mid n \in \mathbb{N}\} \qquad O = \{2 \cdot n + 1 \mid n \in \mathbb{N}\}$$

Then, answer the questions below.

- 1. State whether $\hat{\mathcal{R}}(O) \subseteq O$
- 2. State whether $O \subseteq \hat{\mathcal{R}}(O)$
- 3. State whether $\hat{\mathcal{R}}(E) \subseteq E$
- 4. State whether $E \subseteq \hat{\mathcal{R}}(E)$
- 5. State whether $\hat{\mathcal{R}}(\mathbb{N}) \subseteq \mathbb{N}$
- 6. State whether $\mathbb{N} \subseteq \hat{\mathcal{R}}(\mathbb{N})$
- 7. State whether $\hat{\mathcal{R}}(E \cup \{1\}) \subseteq E \cup \{1\}$

You may whish to exploit the answer for some question when answering another. Finally:

- 1. Characterize the minimum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcap \{X \mid \hat{\mathcal{R}}(X) = X\}$
- 2. Characterize the maximum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcup \{X \mid \hat{\mathcal{R}}(X) = X\}$

4.1 Answer

1 and 2:

O is a set of odds.

$$\hat{\mathcal{R}}(O) = \mathbb{N} \setminus \{0\}$$
 So $O \subseteq \hat{\mathcal{R}}(O)$

3 and 4

E is a set of even

 $\hat{\mathcal{R}}(E) = E \cup \{1\}$ (RZ: no, what about 6 for instance?)

So
$$E \subseteq \hat{\mathcal{R}}(E)$$
 5 and 6

$$\hat{\mathcal{R}}(\mathbb{N}) = \mathbb{N} \quad 7$$

$$\hat{\mathcal{R}}(E \cup \{1\}) = E \cup \{1\} \text{(RZ: not exactly equal)}$$

minimum fixed point of $\hat{\mathcal{R}}: E \cup \{1\}$ (RZ: no)

maximum fixed point of $\hat{\mathcal{R}}$:N