Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

A partial function g is said to be a restriction of a partial function f , written $g\subseteq f$ iff

$$\forall x \in \mathsf{dom}(g). \ g(x) = f(x)$$

Note: this notation "overloads" the symbol \subseteq . Indeed, we shall write $A \subseteq B$ to express a subset relation between two sets, and $g \subseteq f$ to express a restriction relation between two functions.

(From a formal point of view, since we defined functions as set of pairs the two notions coincide: the restriction relation above is equivalent to requiring that $\langle a, b \rangle \in g \implies \langle a, b \rangle \in f$ for all a, b, which indeed states that g is a "subset" of f).

2 Question

Let \mathcal{F} be the set of partial functions $\{f \in (\mathbb{N} \rightsquigarrow \mathbb{N}) | \forall x \in \mathbb{N}. f(2 \cdot x) = x\}$.

- Define two distinct partial functions f_1, f_2 which belong to \mathcal{F} . (I.e, provide two such examples.)
- Define two distinct partial functions g_1, g_2 which do *not* belong to \mathcal{F} . (I.e, provide two such examples.)
- Define a partial function f ∈ F, and consider the set of its finite restrictions G = {g ∈ (N → N)|g ⊆ f ∧ dom(g) finite}.
 - Define two distinct partial functions h_1, h_2 which belong to \mathcal{G} . (I.e, provide two such examples.)

- Prove whether $\mathcal{F} \cap \mathcal{G} = \emptyset$.

2.1 Answer

•
$$f_1(z) = \begin{cases} 0, & z = 0; \\ undefined, & otherwise. \end{cases}$$
; $f_2(z) = \begin{cases} 0, & z = 0; \\ 1, & z = 2; \\ undefined, & otherwise. \end{cases}$

.

(RZ: they do not belong to \mathcal{F})

•
$$g_1(z) = \begin{cases} 1, & z = 0; \\ undefined, & otherwise. \end{cases}; g_2(z) = \begin{cases} 1, & z = 0; \\ 2, & z = 2; \\ undefined, & otherwise. \end{cases}$$

(RZ: ok)

• $\mathcal{F} \cap \mathcal{G} = \emptyset \iff \neg \exists f. f \in \mathcal{F} \land f \in \mathcal{G}$, but $h_1 \in \mathcal{G} \land h_1 \in \mathcal{F} \Longrightarrow \mathcal{F} \cap \mathcal{G} \neq \emptyset$??? (RZ: What is h_1 ?)

Note.

The next part is an advanced exercise. I'd suggest to ${\bf skip}$ it, unless you want an extra challenge.

3 Preliminaries

Let \mathcal{R} be a set of inference rules over elements of a set A. Then, \mathcal{R} induces a function $\hat{\mathcal{R}} \in (\mathcal{P}(A) \to \mathcal{P}(A))$ given by

$$\hat{\mathcal{R}}(X) = \{ y \mid \exists (\frac{x_1 \dots x_n}{z}) \in \mathcal{R} \land y = z \land \forall i \in \{1, \dots, n\} . x_i \in X \}$$

4 Question

Let m,n range over natural numbers. Consider the following set of inference rules $\mathcal R$

$$\frac{n \ m}{n \cdot m} \qquad \frac{1}{1} \qquad \frac{n}{n \cdot 2}$$

an the sets

$$E = \{2 \cdot n \mid n \in \mathbb{N}\} \qquad O = \{2 \cdot n + 1 \mid n \in \mathbb{N}\}$$

Then, answer the questions below.

- 1. State whether $\hat{\mathcal{R}}(O) \subseteq O$
- 2. State whether $O \subseteq \hat{\mathcal{R}}(O)$

- 3. State whether $\hat{\mathcal{R}}(E) \subseteq E$
- 4. State whether $E \subseteq \hat{\mathcal{R}}(E)$
- 5. State whether $\hat{\mathcal{R}}(\mathbb{N}) \subseteq \mathbb{N}$
- 6. State whether $\mathbb{N} \subseteq \hat{\mathcal{R}}(\mathbb{N})$
- 7. State whether $\hat{\mathcal{R}}(E \cup \{1\}) \subseteq E \cup \{1\}$

You may which to exploit the answer for some question when answering another. Finally:

- 1. Characterize the minimum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcap \{X \mid \hat{\mathcal{R}}(X) = X\}$
- 2. Characterize the maximum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcup \{X \mid \hat{\mathcal{R}}(X) = X\}$

4.1 Answer

Write your answer here.