Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

A partial function g is said to be a restriction of a partial function f, written $g \subseteq f$ iff

$$
\forall x \in \operatorname{dom}(g) \cdot g(x)=f(x)
$$

Note: this notation "overloads" the symbol \subseteq. Indeed, we shall write $A \subseteq B$ to express a subset relation between two sets, and $g \subseteq f$ to express a restriction relation between two functions.
(From a formal point of view, since we defined functions as set of pairs the two notions coincide: the restriction relation above is equivalent to requiring that $\langle a, b\rangle \in g \Longrightarrow\langle a, b\rangle \in f$ for all a, b, which indeed states that g is a "subset" of f).

2 Question

Let \mathcal{F} be the set of partial functions $\{f \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid \forall x \in \mathbb{N} . f(2 \cdot x)=x\}$.

- Define two distinct partial functions f_{1}, f_{2} which belong to \mathcal{F}. (I.e, provide two such examples.)
- Define two distinct partial functions g_{1}, g_{2} which do not belong to \mathcal{F}. (I.e, provide two such examples.)
- Define a partial function $f \in \mathcal{F}$, and consider the set of its finite restrictions $\mathcal{G}=\{g \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid g \subseteq f \wedge \operatorname{dom}(g)$ finite $\}$.
- Define two distinct partial functions h_{1}, h_{2} which belong to \mathcal{G}. (I.e, provide two such examples.)
- Prove whether $\mathcal{F} \cap \mathcal{G}=\emptyset$.

2.1 Answer

1) $f_{1}(x)=\left\{\begin{array}{ll}\frac{x}{2} & \text { if } x \% 2=0 \\ \text { undefined } & \text { o.w. }\end{array}\right.$ It belongs to F because $f(2 \cdot x)=x$ holds

$$
f_{2}(x)= \begin{cases}\frac{x}{2} & \text { if } x \% 2=0 \\ \frac{x}{2}+1 & \text { if } x \% 2 \neq 0 \wedge x \in[0,10] \text { It belongs to } \mathrm{F} \text { because } f(2 \\ \text { undefined } & \text { o.w. }\end{cases}
$$

$x)=x$ holds, and there is an additional definition. Also, f 1 can be seen as a restriction of
f2.
2) $g_{1}(x)=\left\{\begin{array}{ll}x & \text { if } x \% 2=0 \\ \text { undefined } & \text { o.w. }\end{array}\right.$ It does not belong to F because $f(2 \cdot x)=$ x does not hold
$g_{2}(x)=\left\{\begin{array}{lll}0 & \text { if } x<10 \\ \text { undefined } & \text { o.w. }\end{array}\right.$ Same reason
3) Let's take f1 as a f belonging to F, and let's look for restrictions of it
$h_{1}(x)=\left\{\begin{array}{ll}\frac{x}{2} & \text { if } x<10 \\ \text { undefined } & \text { o.w. }\end{array}\right.$ It is a finite restrictions because all its elements are elements of $f 1$, and it is defined only for certain x
(RZ: ok, but be careful that $h_{1}(3)=3 / 2 \notin \mathbb{N}$)
$h_{2}(x)=\left\{\begin{array}{ll}\frac{x}{2} & \text { if } x \% 4=0 \wedge x \leq 100 \\ \text { undefined } & \text { o.w. }\end{array}\right.$ Same reason
4) $\mathcal{F} \cap \mathcal{G}=\emptyset$
if it is true, F and G do not have any element in common
but G is defined as a finite restriction of F
(RZ: uh? \mathcal{F}, G are sets so one can not be a "restriction" of the other)
by the definition of restrictions, every element of G is an element of F as well
so, $\mathcal{F} \cap \mathcal{G}=\emptyset$ only in the case in which $\mathcal{G}=\emptyset$; otherwise, if G has at least one element, this element belongs to F too, and to $\mathcal{F} \cap \mathcal{G}$ too
(RZ: no...)

Note.

The next part is an advanced exercise. I'd suggest to skip it, unless you want an extra challenge.

3 Preliminaries

Let \mathcal{R} be a set of inference rules over elements of a set A. Then, \mathcal{R} induces a function $\hat{\mathcal{R}} \in(\mathcal{P}(A) \rightarrow \mathcal{P}(A))$ given by

$$
\hat{\mathcal{R}}(X)=\left\{y \left\lvert\, \exists\left(\frac{x_{1} \ldots x_{n}}{z}\right) \in \mathcal{R} \wedge y=z \wedge \forall i \in\{1, \ldots, n\} \cdot x_{i} \in X\right.\right\}
$$

4 Question

Let m, n range over natural numbers. Consider the following set of inference rules \mathcal{R}

$$
\frac{n m}{n \cdot m} \quad \overline{1} \quad \frac{n}{n \cdot 2}
$$

an the sets

$$
E=\{2 \cdot n \mid n \in \mathbb{N}\} \quad O=\{2 \cdot n+1 \mid n \in \mathbb{N}\}
$$

Then, answer the questions below.

1. State whether $\hat{\mathcal{R}}(O) \subseteq O$
2. State whether $O \subseteq \hat{\mathcal{R}}(O)$
3. State whether $\hat{\mathcal{R}}(E) \subseteq E$
4. State whether $E \subseteq \hat{\mathcal{R}}(E)$
5. State whether $\hat{\mathcal{R}}(\mathbb{N}) \subseteq \mathbb{N}$
6. State whether $\mathbb{N} \subseteq \hat{\mathcal{R}}(\mathbb{N})$
7. State whether $\hat{\mathcal{R}}(E \cup\{1\}) \subseteq E \cup\{1\}$

You may whish to exploit the answer for some question when answering another. Finally:

1. Characterize the minimum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcap\{X \mid \hat{\mathcal{R}}(X)=X\}$
2. Characterize the maximum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcup\{X \mid \hat{\mathcal{R}}(X)=X\}$

4.1 Answer

Write your answer here.

