Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

A partial function g is said to be a restriction of a partial function f, written $g \subseteq f$ iff

$$
\forall x \in \operatorname{dom}(g) \cdot g(x)=f(x)
$$

Note: this notation "overloads" the symbol \subseteq. Indeed, we shall write $A \subseteq B$ to express a subset relation between two sets, and $g \subseteq f$ to express a restriction relation between two functions.
(From a formal point of view, since we defined functions as set of pairs the two notions coincide: the restriction relation above is equivalent to requiring that $\langle a, b\rangle \in g \Longrightarrow\langle a, b\rangle \in f$ for all a, b, which indeed states that g is a "subset" of f).

2 Question

Let \mathcal{F} be the set of partial functions $\{f \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid \forall x \in \mathbb{N} . f(2 \cdot x)=x\}$.

- Define two distinct partial functions f_{1}, f_{2} which belong to \mathcal{F}. (I.e, provide two such examples.)
- Define two distinct partial functions g_{1}, g_{2} which do not belong to \mathcal{F}. (I.e, provide two such examples.)
- Define a partial function $f \in \mathcal{F}$, and consider the set of its finite restrictions $\mathcal{G}=\{g \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid g \subseteq f \wedge \operatorname{dom}(g)$ finite $\}$.
- Define two distinct partial functions h_{1}, h_{2} which belong to \mathcal{G}. (I.e, provide two such examples.)
- Prove whether $\mathcal{F} \cap \mathcal{G}=\emptyset$.

2.1 Answer

- $f_{1}(x)= \begin{cases}\frac{1}{2} x & x \text { is even } \\ \text { undefined } & \text { otherwise }\end{cases}$
$-f_{2}(x)=\left\{\begin{array}{ll}\frac{1}{2} x & \text { xis even } \wedge x<10 \\ \text { undefined } & \text { otherwise }\end{array}\right.$ (The condition does not strictly hold here, because for some $x \in N, f(2 x)$ is undefined) (RZ: so this proves $\left.\left.f_{2} \notin \mathcal{F}!!;-\right)\right)$
- $g_{1}(x)=0$
- $g_{2}(x)=1 / x$ (RZ: beware the result should be a natural)
- $f(x)=x$ (RZ: not in the set \mathcal{F} ?)
$-h_{1}(x)= \begin{cases}x & x<10 \\ \text { undefined } & \text { otherwise }\end{cases}$
$-h_{2}(x)= \begin{cases}x & x<8 \\ \text { undefined } & \text { otherwise }\end{cases}$
- If f_{2} is a correct answer, than it is an example of a function that is contained both in \mathcal{F} and G, so the intersection is not empty.

Note.

The next part is an advanced exercise. I'd suggest to skip it, unless you want an extra challenge.

3 Preliminaries

Let \mathcal{R} be a set of inference rules over elements of a set A. Then, \mathcal{R} induces a function $\hat{\mathcal{R}} \in(\mathcal{P}(A) \rightarrow \mathcal{P}(A))$ given by

$$
\hat{\mathcal{R}}(X)=\left\{y \left\lvert\, \exists\left(\frac{x_{1} \ldots x_{n}}{z}\right) \in \mathcal{R} \wedge y=z \wedge \forall i \in\{1, \ldots, n\} . x_{i} \in X\right.\right\}
$$

4 Question

Let m, n range over natural numbers. Consider the following set of inference rules \mathcal{R}

$$
\frac{n m}{n \cdot m} \quad \overline{1} \quad \frac{n}{n \cdot 2}
$$

an the sets

$$
E=\{2 \cdot n \mid n \in \mathbb{N}\} \quad O=\{2 \cdot n+1 \mid n \in \mathbb{N}\}
$$

Then, answer the questions below.

1. State whether $\hat{\mathcal{R}}(O) \subseteq O$
2. State whether $O \subseteq \hat{\mathcal{R}}(O)$
3. State whether $\hat{\mathcal{R}}(E) \subseteq E$
4. State whether $E \subseteq \hat{\mathcal{R}}(E)$
5. State whether $\hat{\mathcal{R}}(\mathbb{N}) \subseteq \mathbb{N}$
6. State whether $\mathbb{N} \subseteq \hat{\mathcal{R}}(\mathbb{N})$
7. State whether $\hat{\mathcal{R}}(E \cup\{1\}) \subseteq E \cup\{1\}$

You may whish to exploit the answer for some question when answering another. Finally:

1. Characterize the minimum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcap\{X \mid \hat{\mathcal{R}}(X)=X\}$
2. Characterize the maximum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcup\{X \mid \hat{\mathcal{R}}(X)=X\}$

4.1 Answer

1. No, because $\hat{\mathcal{R}}(O)$ also includes even numbers
2. Yes, I can preserve all the odd numbers by multiplying them by 1 (which is odd)
3. No, because $\hat{\mathcal{R}}(E)$ also includes 1 , which is not even.
4. No, because I cannot preserve the number 2 .
5. Yes, because $\hat{\mathcal{R}}(\mathbb{N})=\mathbb{N}$. In fact, we can multiply every number by 1 and still get the whole \mathbb{N}. The other numbers we obtain are still natural numbers.
6. Yes, see 5.
7. Yes, because $\hat{\mathcal{R}}(E \cup\{1\})=E \cup\{1\}$. In fact, if we use rule 1 , we still get $E \cup\{1\}$. With rule 2 , we get 1 (which is already there), and with 3 , we still get $E \cup\{1\}$.

Part 2:

1. Every X must be infinite, because otherwise rule $\# 3$ would generate a larger set (and it would be different). It must also contain 1, all the even numbers (zero is not required), so $E \cup\{1\} \backslash\{0\}$ could be a possible answer.
2. \mathbb{N} (see 5. above)
