Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

A partial function g is said to be a restriction of a partial function f, written $g \subseteq f$ iff

$$
\forall x \in \operatorname{dom}(g) \cdot g(x)=f(x)
$$

Note: this notation "overloads" the symbol \subseteq. Indeed, we shall write $A \subseteq B$ to express a subset relation between two sets, and $g \subseteq f$ to express a restriction relation between two functions.
(From a formal point of view, since we defined functions as set of pairs the two notions coincide: the restriction relation above is equivalent to requiring that $\langle a, b\rangle \in g \Longrightarrow\langle a, b\rangle \in f$ for all a, b, which indeed states that g is a "subset" of f).

2 Question

Let \mathcal{F} be the set of partial functions $\{f \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid \forall x \in \mathbb{N} . f(2 \cdot x)=x\}$.

- Define two distinct partial functions f_{1}, f_{2} which belong to \mathcal{F}. (I.e, provide two such examples.)
- Define two distinct partial functions g_{1}, g_{2} which do not belong to \mathcal{F}. (I.e, provide two such examples.)
- Define a partial function $f \in \mathcal{F}$, and consider the set of its finite restrictions $\mathcal{G}=\{g \in(\mathbb{N} \rightsquigarrow \mathbb{N}) \mid g \subseteq f \wedge \operatorname{dom}(g)$ finite $\}$.
- Define two distinct partial functions h_{1}, h_{2} which belong to \mathcal{G}. (I.e, provide two such examples.)
- Prove whether $\mathcal{F} \cap \mathcal{G}=\emptyset$.

2.1 Answer

NOTATION TRIVIA: the symbol \uparrow stands for "undefined" when talking about partial functions, and "diverges" (loops forever) when talking about programs.

NOTATION TRIVIA: similarly, the symbol \downarrow stands for "converges" (outputs a result in a (possibly large) amount of finite time) when talking about programs.

NOTATION TRIVIA: the symbol \perp, pronounced "bottom", is borrowed from logic. It holds the constant value "false" and when found at the end of a formal proof highlightes a contradiction/absurd.
a. $f_{1}(x)=\left\{\begin{array}{ll}x / 2 & \text { if } \exists n \in \mathbb{N} . x=2 n \\ \uparrow & \text { else }\end{array}, f_{2}(x)= \begin{cases}x / 2 & \text { if } \exists n \in \mathbb{N} . x=2 n \\ (x-1) / 2 & \text { else }\end{cases}\right.$
b. $g_{1}(x)=\left\{\begin{array}{ll}(x-1) / 2 & \text { if } \exists n \in \mathbb{N} . x=2 n+1 \\ \uparrow & \text { else }\end{array}, g_{2}(x)= \begin{cases}x / 2 & \text { if } \exists n \in \mathbb{N} . x=2 n \wedge n \leq \operatorname{ack}(2,2,2) \\ \uparrow & \text { else }\end{cases}\right.$
where g_{1} and g_{2} violate the requested behaviour on an infinite set of points. (ack is the ackermann function)
c. Let's fix $f=f_{1}$. Then:
$h_{1}(x)=\left\{\begin{array}{ll}x / 2 & \text { if } \exists n \in \mathbb{N} .1 \leq n \leq 32 \wedge x=2^{n} \\ \uparrow & \text { else }\end{array}, h_{2}(x)= \begin{cases}x / 2 & \text { if } \exists n \in \mathbb{N} . n \leq 1024 \wedge x=2^{8} n \\ \uparrow & \text { else }\end{cases}\right.$
d. Let's suppose for contraddiction that there exists f^{\prime} s.t. $f^{\prime} \in(\mathcal{F} \cap \mathcal{G}) \neq \emptyset$.
$f^{\prime} \in \mathcal{F} \Longrightarrow\left|\operatorname{dom}\left(f^{\prime}\right)\right|=\mathbb{N}$ (the set of even numbers has a bijection with \mathbb{N})
$f^{\prime} \in \mathcal{G} \Longrightarrow\left|\operatorname{dom}\left(f^{\prime}\right)\right|=k$ s.t. $k \in \mathbb{N}$ (by definition)
$\Longrightarrow \perp$, hence $\mathcal{F} \cap \mathcal{G}=\emptyset$.

Note.

The next part is an advanced exercise. I'd suggest to skip it, unless you want an extra challenge.

3 Preliminaries

Let \mathcal{R} be a set of inference rules over elements of a set A. Then, \mathcal{R} induces a function $\hat{\mathcal{R}} \in(\mathcal{P}(A) \rightarrow \mathcal{P}(A))$ given by

$$
\hat{\mathcal{R}}(X)=\left\{y \left\lvert\, \exists\left(\frac{x_{1} \ldots x_{n}}{z}\right) \in \mathcal{R} \wedge y=z \wedge \forall i \in\{1, \ldots, n\} . x_{i} \in X\right.\right\}
$$

4 Question

Let m, n range over natural numbers. Consider the following set of inference rules \mathcal{R}

$$
\frac{n m}{n \cdot m} \quad \overline{1} \quad \frac{n}{n \cdot 2}
$$

an the sets

$$
E=\{2 \cdot n \mid n \in \mathbb{N}\} \quad O=\{2 \cdot n+1 \mid n \in \mathbb{N}\}
$$

Then, answer the questions below.

1. State whether $\hat{\mathcal{R}}(O) \subseteq O$
2. State whether $O \subseteq \hat{\mathcal{R}}(O)$
3. State whether $\hat{\mathcal{R}}(E) \subseteq E$
4. State whether $E \subseteq \hat{\mathcal{R}}(E)$
5. State whether $\hat{\mathcal{R}}(\mathbb{N}) \subseteq \mathbb{N}$
6. State whether $\mathbb{N} \subseteq \hat{\mathcal{R}}(\mathbb{N})$
7. State whether $\hat{\mathcal{R}}(E \cup\{1\}) \subseteq E \cup\{1\}$

You may whish to exploit the answer for some question when answering another. Finally:

1. Characterize the minimum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcap\{X \mid \hat{\mathcal{R}}(X)=X\}$
2. Characterize the maximum fixed point of $\hat{\mathcal{R}}$, i.e. $\bigcup\{X \mid \hat{\mathcal{R}}(X)=X\}$

4.1 Answer

1. No. The third inference rule injects even numbers into $\hat{\mathcal{R}}(O)$.
2. Yes. The first inference rule plus the fact that $1 \in O$ ensure that all odd numbers will remain into $\hat{\mathcal{R}}(O)$.
3. No. The second rule injects 1 into $\hat{\mathcal{R}}(E)$, which does not belong to E itself.
4. No. The set E does not contain a couple of elements n, m s.t. $n \times m=$ $2(1 \notin E)$ nor an n s.t. $n \times 2=2$ (same reason). Hence E contains an element that does not belong to $\hat{\mathcal{R}}(E)$.
5. Yes. The product operation (between natural numbers, Ed.) is closed over the set of natural numbers, and $1 \in \mathbb{N}$.
6. Yes. The first inference rule plus the fact that $1 \in \mathbb{N}$ ensure that all natural numbers will be into $\hat{\mathcal{R}}(\mathbb{N})$.
7. Yes. The second rule is not an problem anymore. The product of two even numbers is a another even number, the product with the neutral element returns the initial even number. The last rule is obviously not harmful at all.
8. Minimum Fixed point is the set of powers of $2, P_{2}$. Any $P^{\prime} \subset P_{2}$ verifies $\hat{\mathcal{R}}\left(P^{\prime}\right) \neq P^{\prime}$, while $\hat{\mathcal{R}}\left(P_{2}\right)=P_{2}$.
9. Maximum Fixed point is the set \mathbb{N}, because $\hat{\mathcal{R}}(\mathbb{N})=\mathbb{N}$ so \mathbb{N} belongs to the union.
[..was something more expected here?]
Vyger
