Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

We know that $\operatorname{Dom}(f)=A$ and $\operatorname{Range}(g)=A$. This means that $f \circ g=$ $f(g(x))=\operatorname{id}_{B} \Longrightarrow f$ is surjective, because every element in set B has at least one corresponding element in set A. Using the same argumentation $g \circ f=$ $g(f(x))=\mathrm{id}_{A} \Longrightarrow g$ is surjective. Using the definition of inverse fuction we can write $g=f^{-1} . f^{-1}$ is surjective, we conclude that f is bijection.

2 Question

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$. If $\forall a \in A \backslash A^{\prime} . f(a) \notin B^{\prime}$, then $\exists g \in\left(A^{\prime} \longleftrightarrow B^{\prime}\right)$. One example of such fuction g is fuction $f\left(A^{\prime} \longleftrightarrow B^{\prime}\right)$. The condision set in the defition ensure us that the one-to-one correspondence is maintained between the subsets of A and B.

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that is is such.

3.1 Answer

Write your answer here.

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in[(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

Write your answer here.

5 Question

Define a bijection $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$. Prove that is is such.

5.1 Answer

Write your answer here.

6 Question

Define a bijection $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$. Prove that is is such.

6.1 Answer

Write your answer here.

